Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (444) Expression Attributions Wiki
XB-ANAT-3716

Papers associated with cilium

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The chicken left right organizer has nonmotile cilia which are lost in a stage-dependent manner in the talpid(3) ciliopathy., Stephen LA., Genesis. June 1, 2014; 52 (6): 600-13.            


Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia., Wallmeier J., Nat Genet. June 1, 2014; 46 (6): 646-51.


RFX7 is required for the formation of cilia in the neural tube., Manojlovic Z., Mech Dev. May 1, 2014; 132 28-37.                  


A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of Xenopus tadpoles., Walentek P., Development. April 1, 2014; 141 (7): 1526-33.                        


The evolution and conservation of left-right patterning mechanisms., Blum M., Development. April 1, 2014; 141 (8): 1603-13.              


Xenopus embryonic epidermis as a mucociliary cellular ecosystem to assess the effect of sex hormones in a non-reproductive context., Castillo-Briceno P., Front Zool. February 6, 2014; 11 (1): 9.                


An unconventional secretory pathway mediates the cilia targeting of peripherin/rds., Tian G., J Neurosci. January 15, 2014; 34 (3): 992-1006.                      


The morphology and attachment of Protopolystoma xenopodis (Monogenea: Polystomatidae) infecting the African clawed frog Xenopus laevis., Theunissen M., Parasite. January 1, 2014; 21 20.          


microRNAs and cilia. An ancient connection., Walentek P., Cell Cycle. January 1, 2014; 13 (15): 2315-6.  


Coordinated genomic control of ciliogenesis and cell movement by RFX2., Chung MI., Elife. January 1, 2014; 3 e01439.                                                  


The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality., Boskovski MT., Nature. December 19, 2013; 504 (7480): 456-9.    


Biochemical analysis of a rhodopsin photoactivatable GFP fusion as a model of G-protein coupled receptor transport., Sammons JD., Vision Res. December 18, 2013; 93 43-8.


Light-dependent phosphorylation of Bardet-Biedl syndrome 5 in photoreceptor cells modulates its interaction with arrestin1., Smith TS., Cell Mol Life Sci. December 1, 2013; 70 (23): 4603-16.


Stabilization of speckle-type POZ protein (Spop) by Daz interacting protein 1 (Dzip1) is essential for Gli turnover and the proper output of Hedgehog signaling., Schwend T., J Biol Chem. November 8, 2013; 288 (45): 32809-32820.                


A novel approach to quantifying ciliary physiology: microfluidic mixing driven by a ciliated biological surface., Jonas S., Lab Chip. November 7, 2013; 13 (21): 4160-3.


The structure and development of Xenopus laevis cornea., Hu W., Exp Eye Res. November 1, 2013; 116 109-28.                            


Left-right asymmetry: lessons from Cancún., Burdine RD., Development. November 1, 2013; 140 (22): 4465-70.    


It's never too early to get it Right: A conserved role for the cytoskeleton in left-right asymmetry., Vandenberg LN., Commun Integr Biol. November 1, 2013; 6 (6): e27155.          


Deuterosome-mediated centriole biogenesis., Klos Dehring DA., Dev Cell. October 14, 2013; 27 (1): 103-12.


The Small GTPase Rsg1 is important for the cytoplasmic localization and axonemal dynamics of intraflagellar transport proteins., Brooks ER., Cilia. October 7, 2013; 2 13.                      


Myb promotes centriole amplification and later steps of the multiciliogenesis program., Tan FE., Development. October 1, 2013; 140 (20): 4277-86.                


Exotic models may offer unique opportunities to decipher specific scientific question: the case of Xenopus olfactory system., Gascuel J., Anat Rec (Hoboken). September 1, 2013; 296 (9): 1453-61.    


Oxysterol binding to the extracellular domain of Smoothened in Hedgehog signaling., Nedelcu D., Nat Chem Biol. September 1, 2013; 9 (9): 557-64.          


Protein sorting, targeting and trafficking in photoreceptor cells., Pearring JN., Prog Retin Eye Res. September 1, 2013; 36 24-51.


Signals governing the trafficking and mistrafficking of a ciliary GPCR, rhodopsin., Lodowski KH., J Neurosci. August 21, 2013; 33 (34): 13621-38.                      


Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton., Ioannou A., Dev Biol. August 15, 2013; 380 (2): 243-58.                                  


ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6., Zariwala MA., Am J Hum Genet. August 8, 2013; 93 (2): 336-45.  


Cone outer segment and Müller microvilli pericellular matrices provide binding domains for interphotoreceptor retinoid-binding protein (IRBP)., Garlipp MA., Exp Eye Res. August 1, 2013; 113 192-202.                    


ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3., Hoff S., Nat Genet. August 1, 2013; 45 (8): 951-6.                                


Bbof1 is required to maintain cilia orientation., Chien YH., Development. August 1, 2013; 140 (16): 3468-77.


Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream., Gliem S., Cell Mol Life Sci. June 1, 2013; 70 (11): 1965-84.                


Isolation of primary cilia by shear force., Mitchell KAP., Curr Protoc Cell Biol. June 1, 2013; Chapter 3 3.42.1-3.42.9.


Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis., Basten SG., Cilia. April 29, 2013; 2 (1): 6.          


Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1., Hagenlocher C., Cilia. April 29, 2013; 2 (1): 12.                  


Embryonic exposure to propylthiouracil disrupts left-right patterning in Xenopus embryos., van Veenendaal NR., FASEB J. February 1, 2013; 27 (2): 684-91.


Modeling the flexural rigidity of rod photoreceptors., Haeri M., Biophys J. January 22, 2013; 104 (2): 300-12.


Serotonin has early, cilia-independent roles in Xenopus left-right patterning., Vandenberg LN., Dis Model Mech. January 1, 2013; 6 (1): 261-8.    


Using Xenopus skin to study cilia development and function., Werner ME., Methods Enzymol. January 1, 2013; 525 191-217.


Wnt11b is involved in cilia-mediated symmetry breakage during Xenopus left-right development., Walentek P., PLoS One. January 1, 2013; 8 (9): e73646.              


Exon capture and bulk segregant analysis: rapid discovery of causative mutations using high-throughput sequencing., del Viso F., BMC Genomics. November 21, 2012; 13 649.                  


What are those cilia doing in the neural tube?, Bay SN., Cilia. October 1, 2012; 1 (1): 19.


Ultrastructure of the spermatozoon of the diphyllobothriidean cestode Cephalochlamys namaquensis (Cohn, 1906)., Bruňanská M., Parasitol Res. September 1, 2012; 111 (3): 1037-43.


Rab11 regulates planar polarity and migratory behavior of multiciliated cells in Xenopus embryonic epidermis., Kim K., Dev Dyn. September 1, 2012; 241 (9): 1385-95.            


Ciliary and non-ciliary expression and function of PACRG during vertebrate development., Thumberger T., Cilia. August 1, 2012; 1 (1): 13.                        


Control of vertebrate intraflagellar transport by the planar cell polarity effector Fuz., Brooks ER., J Cell Biol. July 9, 2012; 198 (1): 37-45.          


Microtubule-severing enzymes at the cutting edge., Sharp DJ., J Cell Sci. June 1, 2012; 125 (Pt 11): 2561-9.


ATP4a is required for Wnt-dependent Foxj1 expression and leftward flow in Xenopus left-right development., Walentek P., Cell Rep. May 31, 2012; 1 (5): 516-27.                              


Connexin26-mediated transfer of laterality cues in Xenopus., Beyer T., Biol Open. May 15, 2012; 1 (5): 473-81.            


Molecular characterization of a KIF3B-like kinesin gene in the testis of Octopus tankahkeei (Cephalopoda, Octopus)., Dang R., Mol Biol Rep. May 1, 2012; 39 (5): 5589-98.


Regulator of G-protein signaling 18 controls megakaryopoiesis and the cilia-mediated vertebrate mechanosensory system., Louwette S., FASEB J. May 1, 2012; 26 (5): 2125-36.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 ???pagination.result.next???