Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (327) Expression Attributions Wiki
XB-ANAT-452

Papers associated with melanophore

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The effects of melanocortins and electrical fields on neuronal growth., McCaig CD., Exp Neurol. May 1, 1992; 116 (2): 172-9.


Immunoblotting technique to study release of melanophore-stimulating hormone from individual melanotrope cells of the intermediate lobe of Xenopus laevis., de Rijk EP., Cytometry. January 1, 1992; 13 (8): 863-71.


Thyrotropin-releasing hormone facilitates display of reproductive behavior and locomotor behavior in an amphibian., Taylor JA., Horm Behav. June 1, 1991; 25 (2): 128-36.


Neuroanatomical and functional analysis of neural tube formation in notochordless Xenopus embryos; laterality of the ventral spinal cord is lost., Clarke JD., Development. June 1, 1991; 112 (2): 499-516.                        


Characterization of chicken ACTH and alpha-MSH: the primary sequence of chicken ACTH is more similar to Xenopus ACTH than to other avian ACTH., Hayashi H., Gen Comp Endocrinol. June 1, 1991; 82 (3): 434-43.


Coordinated expression of 7B2 and alpha MSH in the melanotrope cells of Xenopus laevis. An immunocytochemical and in situ hybridization study., Ayoubi TA., Cell Tissue Res. May 1, 1991; 264 (2): 329-34.


Differential mechanisms for the N-acetylation of alpha-melanocyte-stimulating hormone and beta-endorphin in the intermediate pituitary of the frog, Xenopus laevis., Dores RM., Neuroendocrinology. January 1, 1991; 53 (1): 54-62.


Morphology of the pars intermedia and the melanophore-stimulating cells in Xenopus laevis in relation to background adaptation., de Rijk EP., Gen Comp Endocrinol. July 1, 1990; 79 (1): 74-82.


Studies on cellular adhesion of Xenopus laevis melanophores: pigment pattern formation and alteration in vivo by endogenous galactoside-binding lectin or its sugar hapten inhibitor., Frunchak YN., Pigment Cell Res. January 1, 1990; 3 (2): 101-14.


GABA and neuropeptide Y co-exist in axons innervating the neurointermediate lobe of the pituitary of Xenopus laevis--an immunoelectron microscopic study., de Rijk EP., Neuroscience. January 1, 1990; 38 (2): 495-502.


Ontogenetic development of S-antigen- and rod-opsin immunoreactions in retinal and pineal photoreceptors of Xenopus laevis in relation to the onset of melatonin-dependent color-change mechanisms., Korf B., Cell Tissue Res. November 1, 1989; 258 (2): 319-29.


Dynamics of background adaptation in Xenopus laevis: role of catecholamines and melanophore-stimulating hormone., van Zoest ID., Gen Comp Endocrinol. October 1, 1989; 76 (1): 19-28.


Particular processing of pro-opiomelanocortin in Xenopus laevis intermediate pituitary. Sequencing of alpha- and beta-melanocyte-stimulating hormones., Rouillé Y., FEBS Lett. March 13, 1989; 245 (1-2): 215-8.


Control of melanoblast differentiation in amphibia by alpha-melanocyte stimulating hormone, a serum melanization factor, and a melanization inhibiting factor., Fukuzawa T., Pigment Cell Res. January 1, 1989; 2 (3): 171-81.


Melanin concentrating hormone. V. Isolation and characterization of alpha-melanocyte-stimulating hormone from frog pituitary glands., Tonon MC., Life Sci. January 1, 1989; 45 (13): 1155-61.


A ventrally localized inhibitor of melanization in Xenopus laevis skin., Fukuzawa T., Dev Biol. September 1, 1988; 129 (1): 25-36.


Xenopus tadpole melanophores are controlled by dark and light and melatonin without influence of time of day., Binkley S., J Pineal Res. January 1, 1988; 5 (1): 87-97.


N-terminal acetylation of melanophore-stimulating hormone in the pars intermedia of Xenopus laevis is a physiologically regulated process., Verburg-van Kemenade BM., Neuroendocrinology. October 1, 1987; 46 (4): 289-96.


The effects of various nutritional supplements on the growth, migration and differentiation of Xenopus laevis neural crest cells in vitro., Wilson HC., In Vitro Cell Dev Biol. May 1, 1987; 23 (5): 323-31.


Physiologically-induced changes in proopiomelanocortin mRNA levels in the pituitary gland of the amphibian Xenopus laevis., Martens GJ., Biochem Biophys Res Commun. March 13, 1987; 143 (2): 678-84.      


Pertussis toxin blocks melatonin-induced pigment aggregation in Xenopus dermal melanophores., White BH., J Comp Physiol B. January 1, 1987; 157 (2): 153-9.


Melanophore differentiation in the periodic albino mutant of Xenopus laevis., Fukuzawa T., Pigment Cell Res. January 1, 1987; 1 (3): 197-201.


Studies on cellular adhesion of Xenopus laevis melanophores: modulation of cell-cell and cell-substratum adhesion in vitro by endogenous Xenopus galactoside-binding lectin., Milos NC., Pigment Cell Res. January 1, 1987; 1 (3): 188-96.


Differentiation of neural crest cells of Xenopus laevis in clonal culture., Akira E., Pigment Cell Res. January 1, 1987; 1 (1): 28-36.


Assessment of TRH as a potential MSH release stimulating factor in Xenopus laevis., Verburg-van Kemenade BM., Peptides. January 1, 1987; 8 (1): 69-76.


GABA and dopamine act directly on melanotropes of Xenopus to inhibit MSH secretion., Verburg-Van Kemenade BM., Brain Res Bull. November 1, 1986; 17 (5): 697-704.


Pigment cell pattern formation in amphibian embryos: a reexamination of the dopa technique., Tucker RP., J Exp Zool. November 1, 1986; 240 (2): 173-82.


Regulation of melanotropin release from the pars intermedia of the amphibian Xenopus laevis: evaluation of the involvement of serotonergic, cholinergic, or adrenergic receptor mechanisms., Verburg-van Kemenade BM., Gen Comp Endocrinol. September 1, 1986; 63 (3): 471-80.


Expression of two proopiomelanocortin genes in the pituitary gland of Xenopus laevis: complete structures of the two preprohormones., Martens GJ., Nucleic Acids Res. May 12, 1986; 14 (9): 3791-8.


Further studies on the melanophores of periodic albino mutant of Xenopus laevis., Fukuzawa T., J Embryol Exp Morphol. February 1, 1986; 91 65-78.


Characteristics of receptors for dopamine in the pars intermedia of the amphibian Xenopus laevis., Verburg-Van Kemenade BM., Neuroendocrinology. January 1, 1986; 44 (4): 446-56.


ACTH1-4 potentiates alpha-MSH-induced melanophore dispersion and excessive grooming., De Graan PN., Peptides. January 1, 1986; 7 (1): 1-4.


GABAergic regulation of melanocyte-stimulating hormone secretion from the pars intermedia of Xenopus laevis: immunocytochemical and physiological evidence., Verburg-van Kemenade BM., Endocrinology. January 1, 1986; 118 (1): 260-7.


Nucleotide sequence of cloned cDNA for pro-opiomelanocortin in the amphibian Xenopus laevis., Martens GJ., J Biol Chem. November 5, 1985; 260 (25): 13685-9.


Characterization of alpha-MSH-induced changes in the phosphorylation of a 53 kDa protein in Xenopus melanophores., de Graan PN., Mol Cell Endocrinol. September 1, 1985; 42 (2): 127-33.


alpha-Melanotropin-induced changes in protein phosphorylation in melanophores., de Graan PN., Mol Cell Endocrinol. September 1, 1985; 42 (2): 119-25.


Fish melanin-concentrating hormone disperses melanin in amphibian melanophores., Ide H., Gen Comp Endocrinol. June 1, 1985; 58 (3): 486-90.


Comparison of structural requirements of alpha-MSH and ACTH for inducing excessive grooming and pigment dispersion., Spruijt BM., Peptides. January 1, 1985; 6 (6): 1185-9.


The development of the pars intermedia and its role in the regulation of dermal melanophores in the larvae of the amphibian Xenopus laevis., Verburg-van Kemenade BM., Gen Comp Endocrinol. July 1, 1984; 55 (1): 54-65.


[Appearance of secondary melanophore reactions in the ontogeny of anuran amphibia]., Zakharova LA., Ontogenez. January 1, 1984; 15 (5): 552-5.


Calcium requirement for alpha-MSH action on melanophores: studies with forskolin., de Graan PN., J Recept Res. January 1, 1984; 4 (1-6): 521-36.


A new in vitro melanophore bioassay for MSH using tail-fins of Xenopus tadpoles., de Graan PN., Mol Cell Endocrinol. October 1, 1983; 32 (2-3): 271-84.


Further observations on the distribution and properties of teleost melanin concentrating hormone., Baker BI., Gen Comp Endocrinol. June 1, 1983; 50 (3): 423-31.


Melanophore differentiation in Xenopus laevis, with special reference to dorsoventral pigment pattern formation., Ohsugi K., J Embryol Exp Morphol. June 1, 1983; 75 141-50.


Proliferation in vitro of melanophores from Xenopus laevis., Fukuzawa T., J Exp Zool. May 1, 1983; 226 (2): 239-44.


Photoaffinity labelling of peptide hormone receptors., Eberle AN., J Recept Res. January 1, 1983; 3 (1-2): 313-26.


Biosynthesis of pairs of peptides related to melanotropin, corticotropin and endorphin in the pars intermedia of the amphibian pituitary gland., Martens GJ., Eur J Biochem. February 1, 1982; 122 (1): 1-10.


Mechanisms of Melanophore Induction in Amphibian Development: (pigment cells/ap /ap mutant/induction/mechanism)., Hoperskaya OA., Dev Growth Differ. January 1, 1982; 24 (3): 245-257.


Evidence for two different turnover pools of adrenocorticotropin, alpha-melanocyte-stimulating hormone, and endorphin-related peptides released by the frog pituitary neurointermediate lobe., Loh YP., Endocrinology. July 1, 1981; 109 (1): 54-61.


Photoaffinity labelling of MSH receptors reveals a dual role of calcium in melanophore stimulation., de Graan PN., FEBS Lett. June 29, 1981; 129 (1): 113-6.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???