Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (15209) Expression Attributions Wiki
XB-ANAT-1

Papers associated with Xenopus anatomical entity (and prmt1)

Limit to papers also referencing gene:
Show all Xenopus anatomical entity papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Developmental and Injury-induced Changes in DNA Methylation in Regenerative versus Non-regenerative Regions of the Vertebrate Central Nervous System., Reverdatto S., BMC Genomics. January 4, 2022; 23 (1): 2.                      


Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons., Belrose JL., BMC Genomics. August 5, 2020; 21 (1): 540.                  


Knocking out histone methyltransferase PRMT1 leads to stalled tadpole development and lethality in Xenopus tropicalis., Shibata Y., Biochim Biophys Acta Gen Subj. March 1, 2020; 1864 (3): 129482.


Trpc1 as the Missing Link Between the Bmp and Ca2+ Signalling Pathways During Neural Specification in Amphibians., Néant I., Sci Rep. November 5, 2019; 9 (1): 16049.                                    


Conservation and divergence of protein pathways in the vertebrate heart., Federspiel JD., PLoS Biol. September 6, 2019; 17 (9): e3000437.                                                    


Developmental expression of three prmt genes in Xenopus., Wang CD, Wang CD, Wang CD., Zool Res. March 18, 2019;                                           


The balance of two opposing factors Mad and Myc regulates cell fate during tissue remodeling., Okada M., Cell Biosci. April 19, 2018; 8 51.          


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


Kcnip1 a Ca²⁺-dependent transcriptional repressor regulates the size of the neural plate in Xenopus., Néant I., Biochim Biophys Acta. September 1, 2015; 1853 (9): 2077-85.  


Heme carrier protein 1 (HCP1) expression and functional analysis in the retina and retinal pigment epithelium., Sharma S., Exp Cell Res. April 1, 2007; 313 (6): 1251-9.


RAP55, a cytoplasmic mRNP component, represses translation in Xenopus oocytes., Tanaka KJ., J Biol Chem. December 29, 2006; 281 (52): 40096-106.                


The Ca2+-induced methyltransferase xPRMT1b controls neural fate in amphibian embryo., Batut J., Proc Natl Acad Sci U S A. October 18, 2005; 102 (42): 15128-33.                


Analysis of Spemann organizer formation in Xenopus embryos by cDNA macroarrays., Wessely O., Dev Biol. May 15, 2004; 269 (2): 552-66.        


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            

???pagination.result.page??? 1