Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1447) Expression Attributions Wiki
XB-ANAT-10

Papers associated with retina (and pcna)

Limit to papers also referencing gene:
Show all retina papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Regeneration from three cellular sources and ectopic mini-retina formation upon neurotoxic retinal degeneration in Xenopus., Parain K., Glia. April 1, 2024; 72 (4): 759-776.                            


CRISPR/Cas9-Mediated Models of Retinitis Pigmentosa Reveal Differential Proliferative Response of Müller Cells between Xenopus laevis and Xenopus tropicalis., Parain K., Cells. February 25, 2022; 11 (5):                   


The Stemness Gene Mex3A Is a Key Regulator of Neuroblast Proliferation During Neurogenesis., Naef V., Front Cell Dev Biol. January 1, 2020; 8 549533.            


The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis., Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.                      


CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis., Naert T., Sci Rep. October 14, 2016; 6 35264.                          


YAP controls retinal stem cell DNA replication timing and genomic stability., Cabochette P., Elife. September 22, 2015; 4 e08488.                                    


TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis., Van Nieuwenhuysen T., Oncoscience. May 19, 2015; 2 (5): 555-66.              


Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification., Huyck RW., Neurotoxicol Teratol. January 1, 2015; 47 102-13.                


Maturin is a novel protein required for differentiation during primary neurogenesis., Martinez-De Luna RI., Dev Biol. December 1, 2013; 384 (1): 26-40.                        


Transgenic Xenopus laevis with the ef1-α promoter as an experimental tool for amphibian retinal regeneration study., Ueda Y., Genesis. August 1, 2012; 50 (8): 642-50.            


Sumoylation controls retinal progenitor proliferation by repressing cell cycle exit in Xenopus laevis., Terada K., Dev Biol. November 1, 2010; 347 (1): 180-94.                                                  


RNA helicase Ddx39 is expressed in the developing central nervous system, limb, otic vesicle, branchial arches and facial mesenchyme of Xenopus laevis., Wilson JM., Gene Expr Patterns. January 1, 2010; 10 (1): 44-52.          


A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina., Agathocleous M., Development. October 1, 2009; 136 (19): 3289-99.                          


Development of the retinotectal system in the direct-developing frog Eleutherodactylus coqui in comparison with other anurans., Schlosser G., Front Zool. June 23, 2008; 5 9.              


Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina., Yoshii C., Dev Biol. March 1, 2007; 303 (1): 45-56.                    


Two different transgenes to study gene silencing and re-expression during zebrafish caudal fin and retinal regeneration., Thummel R., ScientificWorldJournal. December 15, 2006; 6 Suppl 1 65-81.


Embryonic expression of pre-initiation DNA replication factors in Xenopus laevis., Walter BE., Gene Expr Patterns. November 1, 2004; 5 (1): 81-9.                                


Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons., Gervasi C., J Comp Neurol. July 31, 2000; 423 (3): 512-31.                      


Dynamic and differential Oct-1 expression during early Xenopus embryogenesis: persistence of Oct-1 protein following down-regulation of the RNA., Veenstra GJ., Mech Dev. April 1, 1995; 50 (2-3): 103-17.                            

???pagination.result.page??? 1