Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3035) Expression Attributions Wiki
XB-ANAT-12

Papers associated with forebrain (and tub)

Limit to papers also referencing gene:
Show all forebrain papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa., Bocquet B., JCI Insight. November 8, 2023; 8 (21):                                               


Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds., Kowalczyk I., Development. January 26, 2021; 148 (2):                                   


CFAP43 modulates ciliary beating in mouse and Xenopus., Rachev E., Dev Biol. March 15, 2020; 459 (2): 109-125.                                                                    


Evolution of the Rho guanine nucleotide exchange factors Kalirin and Trio and their gene expression in Xenopus development., Kratzer MC., Gene Expr Patterns. June 1, 2019; 32 18-27.                              


Katanin-like protein Katnal2 is required for ciliogenesis and brain development in Xenopus embryos., Willsey HR., Dev Biol. October 15, 2018; 442 (2): 276-287.                                      


The brain is required for normal muscle and nerve patterning during early Xenopus development., Herrera-Rincon C., Nat Commun. September 25, 2017; 8 (1): 587.              


An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center., Sena E., J Dev Biol. October 20, 2016; 4 (4):       


Ciliary transcription factors and miRNAs precisely regulate Cp110 levels required for ciliary adhesions and ciliogenesis., Walentek P., Elife. September 13, 2016; 5                                   


c21orf59/kurly Controls Both Cilia Motility and Polarization., Jaffe KM., Cell Rep. March 1, 2016; 14 (8): 1841-9.                  


The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development., Ossipova O., Dev Biol. December 15, 2015; 408 (2): 316-27.                              


The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells., Yasunaga T., J Cell Biol. December 7, 2015; 211 (5): 963-73.          


miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways., Chevalier B., Nat Commun. September 18, 2015; 6 8386.                


In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity., Kuriyama S., J Cell Biol. July 7, 2014; 206 (1): 113-27.                                


miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110., Song R., Nature. June 5, 2014; 510 (7503): 115-20.                                


Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions., Domínguez L., J Comp Neurol. April 1, 2014; 522 (5): 1102-31.                                      


Cyp19a1 (aromatase) expression in the Xenopus brain at different developmental stages., Coumailleau P., J Neuroendocrinol. April 1, 2014; .          


Abelson phosphorylation of CLASP2 modulates its association with microtubules and actin., Engel U., Cytoskeleton (Hoboken). March 1, 2014; 71 (3): 195-209.                


PTK7 modulates Wnt signaling activity via LRP6., Bin-Nun N., Development. January 1, 2014; 141 (2): 410-21.              


Kidins220/ARMS is dynamically expressed during Xenopus laevis development., Marracci S., Int J Dev Biol. January 1, 2013; 57 (9-10): 787-92.            


Rab11 regulates planar polarity and migratory behavior of multiciliated cells in Xenopus embryonic epidermis., Kim K., Dev Dyn. September 1, 2012; 241 (9): 1385-95.            


A large scale screen for neural stem cell markers in Xenopus retina., Parain K., Dev Neurobiol. April 1, 2012; 72 (4): 491-506.                                                    


A hindbrain-repressive Wnt3a/Meis3/Tsh1 circuit promotes neuronal differentiation and coordinates tissue maturation., Elkouby YM., Development. April 1, 2012; 139 (8): 1487-97.                    


Focal adhesion kinase protein regulates Wnt3a gene expression to control cell fate specification in the developing neural plate., Fonar Y., Mol Biol Cell. July 1, 2011; 22 (13): 2409-21.                  


Ontogenetic distribution of the transcription factor nkx2.2 in the developing forebrain of Xenopus laevis., Domínguez L., Front Neuroanat. March 2, 2011; 5 11.            


MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization., Suzuki M., Development. July 1, 2010; 137 (14): 2329-39.                                                      


Mesodermal Wnt signaling organizes the neural plate via Meis3., Elkouby YM., Development. May 1, 2010; 137 (9): 1531-41.        


Ptf1a triggers GABAergic neuronal cell fates in the retina., Dullin JP., BMC Dev Biol. May 31, 2007; 7 110.              


Caspase-9 regulates apoptosis/proliferation balance during metamorphic brain remodeling in Xenopus., Coen L., Proc Natl Acad Sci U S A. May 15, 2007; 104 (20): 8502-7.                    


Glypican 4 modulates FGF signalling and regulates dorsoventral forebrain patterning in Xenopus embryos., Galli A., Development. October 1, 2003; 130 (20): 4919-29.              


A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos., Stancheva I., Mol Cell. August 1, 2003; 12 (2): 425-35.                          


Xenopus eomesodermin is expressed in neural differentiation., Ryan K., Mech Dev. July 1, 1998; 75 (1-2): 155-8.    


A role for Xenopus Gli-type zinc finger proteins in the early embryonic patterning of mesoderm and neuroectoderm., Marine JC., Mech Dev. May 1, 1997; 63 (2): 211-25.              

???pagination.result.page??? 1