Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3035) Expression Attributions Wiki
XB-ANAT-12

Papers associated with forebrain (and th)

Limit to papers also referencing gene:
Show all forebrain papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Temporal and spatial transcriptomic dynamics across brain development in Xenopus laevis tadpoles., Ta AC., G3 (Bethesda). January 4, 2022; 12 (1):               


Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates)., Xavier AL., J Comp Neurol. June 15, 2017; 525 (9): 2265-2283.                        


Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis., Morona R., J Comp Neurol. March 1, 2017; 525 (4): 715-752.                                            


Deep-brain photoreception links luminance detection to motor output in Xenopus frog tadpoles., Currie SP., Proc Natl Acad Sci U S A. May 24, 2016; 113 (21): 6053-8.                      


ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging., Lee E., Sci Rep. January 11, 2016; 6 18631.                    


Spatiotemporal Development of the Orexinergic (Hypocretinergic) System in the Central Nervous System of Xenopus laevis., López JM., Brain Behav Evol. January 1, 2016; 88 (2): 127-146.


Ascl1 phospho-status regulates neuronal differentiation in a Xenopus developmental model of neuroblastoma., Wylie LA., Dis Model Mech. May 1, 2015; 8 (5): 429-41.                


Dopamine: a parallel pathway for the modulation of spinal locomotor networks., Sharples SA., Front Neural Circuits. June 16, 2014; 8 55.          


Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina., Mazurier N., PLoS One. March 18, 2014; 9 (3): e92113.                        


Wiring the retinal circuits activated by light during early development., Bertolesi GE., Neural Dev. February 13, 2014; 9 3.              


Angiogenesis in the intermediate lobe of the pituitary gland alters its structure and function., Tanaka S., Gen Comp Endocrinol. May 1, 2013; 185 10-8.        


Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos., Milet C., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.                      


Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development., Morona R., J Comp Neurol. January 1, 2013; 521 (1): 79-108.                  


Contexts for dopamine specification by calcium spike activity in the CNS., Velázquez-Ulloa NA., J Neurosci. January 5, 2011; 31 (1): 78-88.                    


Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system., López JM., J Chem Neuroanat. December 1, 2010; 40 (4): 325-38.


Sonic hedgehog expression during Xenopus laevis forebrain development., Domínguez L., Dev Biol. August 6, 2010; 1347 19-32.            


Generation of functional eyes from pluripotent cells., Viczian AS., PLoS Biol. August 1, 2009; 7 (8): e1000174.                                


Spatio-temporal expression of Pax6 in Xenopus forebrain., Moreno N., Brain Res. November 6, 2008; 1239 92-9.      


Islet1 as a marker of subdivisions and cell types in the developing forebrain of Xenopus., Moreno N., Neuroscience. July 17, 2008; 154 (4): 1423-39.


Anuran olfactory bulb organization: embryology, neurochemistry and hodology., Moreno N., Brain Res Bull. March 18, 2008; 75 (2-4): 241-5.


Ptf1a triggers GABAergic neuronal cell fates in the retina., Dullin JP., BMC Dev Biol. May 31, 2007; 7 110.              


Colocalization of nitric oxide synthase and monoamines in neurons of the amphibian brain., López JM., Brain Res Bull. September 15, 2005; 66 (4-6): 555-9.


Tyrosine hydroxylase-immunoreactive interneurons in the olfactory bulb of the frogs Rana pipiens and Xenopus laevis., Boyd JD., J Comp Neurol. December 2, 2002; 454 (1): 42-57.  


Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study., Ubink R., J Comp Neurol. July 20, 1998; 397 (1): 60-8.          


Basal ganglia organization in amphibians: chemoarchitecture., Marín O., J Comp Neurol. March 16, 1998; 392 (3): 285-312.                      


Brain-derived neurotrophic factor/neurotrophin-4 receptor TrkB is localized on ganglion cells and dopaminergic amacrine cells in the vertebrate retina., Cellerino A., J Comp Neurol. September 15, 1997; 386 (1): 149-60.


Development of catecholamine systems in the central nervous system of the newt Pleurodeles waltlii as revealed by tyrosine hydroxylase immunohistochemistry., González A., J Comp Neurol. September 11, 1995; 360 (1): 33-48.


Ontogeny of catecholamine systems in the central nervous system of anuran amphibians: an immunohistochemical study with antibodies against tyrosine hydroxylase and dopamine., González A., J Comp Neurol. August 1, 1994; 346 (1): 63-79.


Distribution of tyrosine hydroxylase and dopamine immunoreactivities in the brain of the South African clawed frog Xenopus laevis., González A., Anat Embryol (Berl). February 1, 1993; 187 (2): 193-201.


Does lineage determine the dopamine phenotype in the tadpole hypothalamus?: A quantitative analysis., Huang S., J Neurosci. April 1, 1992; 12 (4): 1351-62.                


Phosphorylation of human recombinant tyrosine hydroxylase isoforms 1 and 2: an additional phosphorylated residue in isoform 2, generated through alternative splicing., Le Bourdellès B., J Biol Chem. September 15, 1991; 266 (26): 17124-30.


Development of the Xenopus laevis hatching gland and its relationship to surface ectoderm patterning., Drysdale TA., Development. February 1, 1991; 111 (2): 469-78.            


Morphology and retinal distribution of tyrosine hydroxylase-like immunoreactive amacrine cells in the retina of developing Xenopus laevis., Zhu BS., Anat Embryol (Berl). January 1, 1991; 184 (1): 33-45.


Multiple human tyrosine hydroxylase enzymes, generated through alternative splicing, have different specific activities in Xenopus oocytes., Horellou P., J Neurochem. August 1, 1988; 51 (2): 652-5.

???pagination.result.page??? 1