Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (2933) Expression Attributions Wiki
XB-ANAT-12

Papers associated with forebrain

Limit to papers also referencing gene:
Results 1 - 50 of 2933 results

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Sort Newest To Oldest Sort Oldest To Newest

Thyroid Disrupting Chemicals in Mixture Perturb Thymocyte Differentiation in Xenopus laevis Tadpoles., McGuire CC., Toxicol Sci. May 27, 2021; 181 (2): 262-272.


Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage., Castro Colabianchi AM., Biol Open. February 25, 2021; 10 (2):                 


Rab11fip5 regulates telencephalon development via ephrinB1 recycling., Yoon J., Development. February 2, 2021; 148 (3):                                                             


Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds., Kowalczyk I., Development. January 1, 2021; 148 (2):


Parallel in vivo analysis of large-effect autism genes implicates cortical neurogenesis and estrogen in risk and resilience., Willsey HR., Neuron. January 1, 2021; 109 (5): 788-804.e8.


The molecular dynamics of subdistal appendages in multi-ciliated cells., Ryu H., Nat Commun. January 1, 2021; 12 (1): 612.                


In Xenopus ependymal cilia drive embryonic CSF circulation and brain development independently of cardiac pulsatile forces., Dur AH., Fluids Barriers CNS. December 11, 2020; 17 (1): 72.                  


The tetraspanin Cd63 is required for eye morphogenesis in Xenopus., Kreis J., MicroPubl Biol. November 27, 2020; 2020   


Analysis of pallial/cortical interneurons in key vertebrate models of Testudines, Anurans and Polypteriform fishes., Jiménez S., Brain Struct Funct. September 1, 2020; 225 (7): 2239-2269.


FERM domain-containing protein 6 identifies a subpopulation of varicose nerve fibers in different vertebrate species., Beck J., Cell Tissue Res. July 1, 2020; 381 (1): 13-24.                            


Characterization of a novel thyrotropin-releasing hormone receptor, TRHR3, in chickens., Li X., Poult Sci. March 1, 2020; 99 (3): 1643-1654.              


Heparan sulfate proteoglycans regulate BMP signalling during neural crest induction., Pegge J., Dev Biol. January 1, 2020; 460 (2): 108-114.        


CFAP43 modulates ciliary beating in mouse and Xenopus., Rachev E., Dev Biol. January 1, 2020; 459 (2): 109-125.                                                                    


Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication., Kelley DB., J Neurosci. January 1, 2020; 40 (1): 22-36.


miR-199 plays both positive and negative regulatory roles in Xenopus eye development., Ritter RA., Genesis. January 1, 2020; 58 (3-4): e23354.                        


The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer., Chang LS., Elife. January 1, 2020; 9                                                                                               


RBL1 (p107) functions as tumor suppressor in glioblastoma and small-cell pancreatic neuroendocrine carcinoma in Xenopus tropicalis., Naert T., Oncogene. January 1, 2020; 39 (13): 2692-2706.          


NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models., Singh MD., PLoS Genet. January 1, 2020; 16 (2): e1008590.                        


Opposite Modulation of RAC1 by Mutations in TRIO Is Associated with Distinct, Domain-Specific Neurodevelopmental Disorders., Barbosa S., Am J Hum Genet. January 1, 2020; 106 (3): 338-355.                            


Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis., Morona R., J Comp Neurol. January 1, 2020; 528 (14): 2361-2403.


Lhx2/9 and Etv1 Transcription Factors have Complementary roles in Regulating the Expression of Guidance Genes slit1 and sema3a., Yang JJ., Neuroscience. January 1, 2020; 434 66-82.


Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome., Alharatani R., Hum Mol Genet. January 1, 2020; 29 (11): 1900-1921.                  


DNA methylation dynamics underlie metamorphic gene regulation programs in Xenopus tadpole brain., Kyono Y., Dev Biol. January 1, 2020; 462 (2): 180-196.


Effect of nano-encapsulation of β-carotene on Xenopus laevis embryos development (FETAX)., Battistoni M., Toxicol Rep. January 1, 2020; 7 510-519.                  


Managing the Oocyte Meiotic Arrest-Lessons from Frogs and Jellyfish., Jessus C., Cells. January 1, 2020; 9 (5):           


The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos., Willsey HR., Development. January 1, 2020; 147 (21):                             


HCN2 Channel-Induced Rescue of Brain Teratogenesis via Local and Long-Range Bioelectric Repair., Pai VP., Front Cell Neurosci. January 1, 2020; 14 136.                      


Predation threats for a 24-h period activated the extension of axons in the brains of Xenopus tadpoles., Mori T., Sci Rep. January 1, 2020; 10 (1): 11737.                    


Interplay of TRIM2 E3 Ubiquitin Ligase and ALIX/ESCRT Complex: Control of Developmental Plasticity During Early Neurogenesis., Lokapally A., Cells. January 1, 2020; 9 (7):                                           


Diffusible GRAPHIC to visualize morphology of cells after specific cell-cell contact., Kinoshita N., Sci Rep. January 1, 2020; 10 (1): 14437.            


Hes5.9 Coordinate FGF and Notch Signaling to Modulate Gastrulation via Regulating Cell Fate Specification and Cell Migration in Xenopus tropicalis., Huang X., Genes (Basel). January 1, 2020; 11 (11):                   


MiR-9 and the Midbrain-Hindbrain Boundary: A Showcase for the Limited Functional Conservation and Regulatory Complexity of MicroRNAs., Alwin Prem Anand A., Front Cell Dev Biol. January 1, 2020; 8 586158.  


Disruptive effects of two organotin pesticides on the thyroid signaling pathway in Xenopus laevis during metamorphosis., Li S., Sci Total Environ. December 20, 2019; 697 134140.


Exposure to graphene oxide at environmental concentrations induces thyroid endocrine disruption and lipid metabolic disturbance in Xenopus laevis., Li M., Chemosphere. December 1, 2019; 236 124834.


Identifying Common Features in the Activation of Melanocortin-2 Receptors: Studies on the Xenopus tropicalis Melanocortin-2 Receptor., Davis PE., Int J Mol Sci. August 26, 2019; 20 (17):           


The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism., Yang JJ., eNeuro. March 1, 2019; 6 (2):                   


From axolotl to zebrafish: a comparative approach to the study of thyroid involvement in ocular development., Williams DL., Eye (Lond). January 1, 2019; 33 (2): 218-222.


Noncanonical Modulation of the eIF2 Pathway Controls an Increase in Local Translation during Neural Wiring., Cagnetta R., Mol Cell. January 1, 2019; 73 (3): 474-489.e5.                


Retinoic acid signaling reduction recapitulates the effects of alcohol on embryo size., Shukrun N., Genesis. January 1, 2019; 57 (7-8): e23284.                


Broad applicability of a streamlined ethyl cinnamate-based clearing procedure., Masselink W., Development. January 1, 2019; 146 (3):         


A novel type of prolactin expressed in the bullfrog pituitary specifically during the larval period., Okada R., Gen Comp Endocrinol. January 1, 2019; 276 77-85.


The Wnt inhibitor Dkk1 is required for maintaining the normal cardiac differentiation program in Xenopus laevis., Guo Y., Dev Biol. January 1, 2019; 449 (1): 1-13.                                  


Plasticity for colour adaptation in vertebrates explained by the evolution of the genes pomc, pmch and pmchl., Bertolesi GE., Pigment Cell Melanoma Res. January 1, 2019; 32 (4): 510-527.  


GTP binding protein 10 is a member of the OBG family of proteins and is differentially expressed in the early Xenopus embryo., Jerry R., Gene Expr Patterns. January 1, 2019; 32 12-17.            


A microarray-based comparative analysis of gene expression profiles in thyroid glands in amphibian metamorphosis: differences in effects between chemical exposure and food restriction., Ose K., J Appl Toxicol. January 1, 2019; 39 (7): 1030-1042.


Distribution and neuronal circuit of spexin 1/2 neurons in the zebrafish CNS., Kim E., Sci Rep. January 1, 2019; 9 (1): 5025.              


Agr2-interacting Prod1-like protein Tfp4 from Xenopus laevis is necessary for early forebrain and eye development as well as for the tadpole appendage regeneration., Tereshina MB., Genesis. January 1, 2019; 57 (5): e23293.                  


New roles for Wnt and BMP signaling in neural anteroposterior patterning., Polevoy H., EMBO Rep. January 1, 2019; 20 (6):


PACAP-38 and PACAP(6-38) Degranulate Rat Meningeal Mast Cells via the Orphan MrgB3-Receptor., Pedersen SH., Front Cell Neurosci. January 1, 2019; 13 114.              


Visualizing flow in an intact CSF network using optical coherence tomography: implications for human congenital hydrocephalus., Date P., Sci Rep. January 1, 2019; 9 (1): 6196.                            

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next