Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1670) Expression Attributions Wiki
XB-ANAT-122

Papers associated with blood (and slc12a3)

Limit to papers also referencing gene:
Show all blood papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Functions of block of proliferation 1 during anterior development in Xenopus laevis., Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.                        


The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways., Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.                        


Structure-function relationships in the renal NaCl cotransporter (NCC)., Moreno E., Curr Top Membr. January 1, 2019; 83 177-204.


The European Eel NCCβ Gene Encodes a Thiazide-resistant Na-Cl Cotransporter., Moreno E., J Biol Chem. October 21, 2016; 291 (43): 22472-22481.


Alternative splice variant of the thiazide-sensitive NaCl cotransporter: a novel player in renal salt handling., Tutakhel OA., Am J Physiol Renal Physiol. February 1, 2016; 310 (3): F204-16.


WNK3 Kinase Enhances the Sodium Chloride Cotransporter Expression via an ERK 1/2 Signaling Pathway., Wang D., Nephron. January 1, 2016; 133 (4): 287-95.


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM., Front Aging Neurosci. May 19, 2015; 7 62.                                            


WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4., Chávez-Canales M., Hypertension. November 1, 2014; 64 (5): 1047-53.


Sterol carrier protein 2 regulates proximal tubule size in the Xenopus pronephric kidney by modulating lipid rafts., Cerqueira DM., Dev Biol. October 1, 2014; 394 (1): 54-64.                                          


The structure and development of Xenopus laevis cornea., Hu W., Exp Eye Res. November 1, 2013; 116 109-28.                            


Activation of the renal Na+:Cl- cotransporter by angiotensin II is a WNK4-dependent process., Castañeda-Bueno M., Proc Natl Acad Sci U S A. May 15, 2012; 109 (20): 7929-34.


Mutations in IRX5 impair craniofacial development and germ cell migration via SDF1., Bonnard C., Nat Genet. May 13, 2012; 44 (6): 709-13.    


A minor role of WNK3 in regulating phosphorylation of renal NKCC2 and NCC co-transporters in vivo., Oi K., Biol Open. February 15, 2012; 1 (2): 120-7.              


Nedd4-2 modulates renal Na+-Cl- cotransporter via the aldosterone-SGK1-Nedd4-2 pathway., Arroyo JP., J Am Soc Nephrol. September 1, 2011; 22 (9): 1707-19.


Downregulation of NCC and NKCC2 cotransporters by kidney-specific WNK1 revealed by gene disruption and transgenic mouse models., Liu Z., Hum Mol Genet. March 1, 2011; 20 (5): 855-66.


Rare mutations in SLC12A1 and SLC12A3 protect against hypertension by reducing the activity of renal salt cotransporters., Acuña R., J Hypertens. March 1, 2011; 29 (3): 475-83.


Aldosterone mediates activation of the thiazide-sensitive Na-Cl cotransporter through an SGK1 and WNK4 signaling pathway., Rozansky DJ., J Clin Invest. September 1, 2009; 119 (9): 2601-12.


Coexistence of normotensive primary aldosteronism in two patients with Gitelman's syndrome and novel thiazide-sensitive Na-Cl cotransporter mutations., Miao Z., Eur J Endocrinol. August 1, 2009; 161 (2): 275-83.


Cotransporters, WNKs and hypertension: an update., Flatman PW., Curr Opin Nephrol Hypertens. March 1, 2008; 17 (2): 186-92.


Organization of the pronephric kidney revealed by large-scale gene expression mapping., Raciti D., Genome Biol. January 1, 2008; 9 (5): R84.                                                                        


The Na+:Cl- cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion., Pacheco-Alvarez D., J Biol Chem. September 29, 2006; 281 (39): 28755-63.


Affinity-defining domains in the Na-Cl cotransporter: a different location for Cl- and thiazide binding., Moreno E., J Biol Chem. June 23, 2006; 281 (25): 17266-75.


WNK3 bypasses the tonicity requirement for K-Cl cotransporter activation via a phosphatase-dependent pathway., de Los Heros P., Proc Natl Acad Sci U S A. February 7, 2006; 103 (6): 1976-81.


XHas2 activity is required during somitogenesis and precursor cell migration in Xenopus development., Ori M., Development. February 1, 2006; 133 (4): 631-40.                        


WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl- cotransporters required for normal blood pressure homeostasis., Rinehart J., Proc Natl Acad Sci U S A. November 15, 2005; 102 (46): 16777-82.


WNK kinases and the control of blood pressure., Cope G., Pharmacol Ther. May 1, 2005; 106 (2): 221-31.


[WNK1 and WNK4, new players in salt and water homeostasis], Hadchouel J., Med Sci (Paris). January 1, 2005; 21 (1): 55-60.


A single nucleotide polymorphism alters the activity of the renal Na+:Cl- cotransporter and reveals a role for transmembrane segment 4 in chloride and thiazide affinity., Moreno E., J Biol Chem. April 16, 2004; 279 (16): 16553-60.


WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion., Kahle KT., Nat Genet. December 1, 2003; 35 (4): 372-6.


WNK kinases regulate thiazide-sensitive Na-Cl cotransport., Yang CL., J Clin Invest. April 1, 2003; 111 (7): 1039-45.


The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system., Burns AJ., Development. November 1, 1998; 125 (21): 4335-47.

???pagination.result.page??? 1