Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (329) Attributions Wiki
XB-STAGE-13

Papers associated with NF stage 2 (2-cell)

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Putrescine and spermidine biosynthesis in the development of normal and anucleolate mutants of Xenopus laevis., Russell DH., Proc Natl Acad Sci U S A. March 1, 1971; 68 (3): 523-7.


DNA synthesis during lens regeneration in larval Xenopus laevis., Waggoner PR, Reyer RW., J Exp Zool. April 1, 1975; 192 (1): 65-71.


Mitosis in presumptive primordial germ cells in post-blastula embryos of Xenopus laevis., Dziadek M, Dixon KE., J Exp Zool. May 1, 1975; 192 (2): 285-91.


Effect of UV on cleavage of Xenopus laevis., Beal CM, Dixon KE., J Exp Zool. May 1, 1975; 192 (2): 277-83.


New membrane formation and intercellular communication in the early Xenopus embryo. II. Theoretical analysis., de Laat SW, Barts PW., J Membr Biol. June 9, 1976; 27 (1-2): 131-51.


Protein synthesis and germ plasm in cleavage embryos of Xenopus laevis., Hogarth K, Dixon KE., J Exp Zool. December 1, 1976; 198 (3): 429-35.


Germinal vesicle breakdown in the Xenopus laevis oocyte: description of a transient microtubular structure., Huchon D, Crozet N, Cantenot N, Ozon R., Reprod Nutr Dev. January 1, 1981; 21 (1): 135-48.


A mosaicism in the higher order structure of Xenopus oocyte nucleolar chromatin prior to and during ribosomal gene transcription., Pruitt SC, Grainger RM., Cell. March 1, 1981; 23 (3): 711-20.


Pattern regulation in isolated halves and blastomeres of early Xenopus laevis., Kageura H, Yamana K., J Embryol Exp Morphol. April 1, 1983; 74 221-34.


Dynamics of the control of body pattern in the development of Xenopus laevis. II. Timing and pattern in the development of single blastomeres (presumptive lateral halves) isolated at the 2-cell stage., Cooke J, Webber JA., J Embryol Exp Morphol. August 1, 1985; 88 113-33.


Observations on the mitochondrial distribution in normal, rotated and cold-treated 2-cell stage embryos of Xenopus laevis., Marinos E., Cell Differ. May 1, 1986; 18 (3): 163-71.


An analog of Xenopus N1N2 protein in Pleurodeles waltl., Moreau N, Lautredou N, Angelier N., Biol Cell. January 1, 1989; 67 (1): 19-26.


The maternal store of the xlgv7 mRNA in full-grown oocytes is not required for normal development in Xenopus., Kloc M, Miller M, Carrasco AE, Eastman E, Etkin L., Development. December 1, 1989; 107 (4): 899-907.              


Uptake and release of 63Ni2+ by Xenopus embryos during early cleavage stages., Sunderman FW, Mongillo FJ, Plowman MC, Brennan SM., Biol Met. January 1, 1990; 2 (4): 214-8.


Evidence that Mos protein may not act directly on cyclin., Xu W, Ladner KJ, Smith LD., Proc Natl Acad Sci U S A. May 15, 1992; 89 (10): 4573-7.


Isolation and sequence of a cDNA encoding the precursor of a bombesinlike peptide from brain and early embryos of Xenopus laevis., Wechselberger C, Kreil G, Richter K., Proc Natl Acad Sci U S A. October 15, 1992; 89 (20): 9819-22.      


Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF., MacNicol AM, Muslin AJ, Williams LT., Cell. May 7, 1993; 73 (3): 571-83.


Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis., Moon RT, Campbell RM, Christian JL, McGrew LL, Shih J, Fraser S., Development. September 1, 1993; 119 (1): 97-111.                  


Competence prepattern in the animal hemisphere of the 8-cell-stage Xenopus embryo., Kinoshita K, Bessho T, Asashima M., Dev Biol. November 1, 1993; 160 (1): 276-84.        


Distinct elements of the xsna promoter are required for mesodermal and ectodermal expression., Mayor R, Essex LJ, Bennett MF, Sargent MG., Development. November 1, 1993; 119 (3): 661-71.                  


Translocation of repetitive RNA sequences with the germ plasm in Xenopus oocytes., Kloc M, Spohr G, Etkin LD., Science. December 10, 1993; 262 (5140): 1712-4.


Regulation of primary erythropoiesis in the ventral mesoderm of Xenopus gastrula embryo: evidence for the expression of a stimulatory factor(s) in animal pole tissue., Maéno M, Ong RC, Xue Y, Nishimatsu S, Ueno N, Kung HF., Dev Biol. February 1, 1994; 161 (2): 522-9.


Inhibition of activin receptor signaling promotes neuralization in Xenopus., Hemmati-Brivanlou A, Melton DA., Cell. April 22, 1994; 77 (2): 273-81.            


Expression and activity of p40MO15, the catalytic subunit of cdk-activating kinase, during Xenopus oogenesis and embryogenesis., Brown AJ, Jones T, Shuttleworth J., Mol Biol Cell. August 1, 1994; 5 (8): 921-32.              


Overexpression of XMyoD or XMyf5 in Xenopus embryos induces the formation of enlarged myotomes through recruitment of cells of nonsomitic lineage., Ludolph DC, Neff AW, Mescher AL, Malacinski GM, Parker MA, Smith RC., Dev Biol. November 1, 1994; 166 (1): 18-33.                              


Androgen directs sexual differentiation of laryngeal innervation in developing Xenopus laevis., Robertson JC, Watson JT, Kelley DB., J Neurobiol. December 1, 1994; 25 (12): 1625-36.


Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes., Kloc M, Etkin LD., Development. February 1, 1995; 121 (2): 287-97.              


Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3., Pierce SB, Kimelman D., Development. March 1, 1995; 121 (3): 755-65.              


The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions., Pannese M, Polo C, Andreazzoli M, Vignali R, Kablar B, Barsacchi G, Boncinelli E., Development. March 1, 1995; 121 (3): 707-20.                      


Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle., Blitz IL, Cho KW., Development. April 1, 1995; 121 (4): 993-1004.              


Developmental expression of the maternal protein XDCoH, the dimerization cofactor of the homeoprotein LFB1 (HNF1)., Pogge yon Strandmann E, Ryffel GU., Development. April 1, 1995; 121 (4): 1217-26.                      


Patterning of the mesoderm in Xenopus: dose-dependent and synergistic effects of Brachyury and Pintallavis., O'Reilly MA, Smith JC, Cunliffe V., Development. May 1, 1995; 121 (5): 1351-9.                  


A type 1 serine/threonine kinase receptor that can dorsalize mesoderm in Xenopus., Mahony D, Gurdon JB., Proc Natl Acad Sci U S A. July 3, 1995; 92 (14): 6474-8.          


Autonomous endodermal determination in Xenopus: regulation of expression of the pancreatic gene XlHbox 8., Gamer LW, Wright CV., Dev Biol. September 1, 1995; 171 (1): 240-51.                


PDGF signalling is required for gastrulation of Xenopus laevis., Ataliotis P, Symes K, Chou MM, Ho L, Mercola M., Development. September 1, 1995; 121 (9): 3099-110.                  


Regulation of gene expression at the beginning of mammalian development., Nothias JY, Majumder S, Kaneko KJ, DePamphilis ML., J Biol Chem. September 22, 1995; 270 (38): 22077-80.


Progressive maturation of chromatin structure regulates HSP70.1 gene expression in the preimplantation mouse embryo., Thompson EM, Legouy E, Christians E, Renard JP., Development. October 1, 1995; 121 (10): 3425-37.


The identification of two novel ligands of the FGF receptor by a yeast screening method and their activity in Xenopus development., Kinoshita N, Minshull J, Kirschner MW., Cell. November 17, 1995; 83 (4): 621-30.                  


Neurofilaments help maintain normal morphologies and support elongation of neurites in Xenopus laevis cultured embryonic spinal cord neurons., Lin W, Szaro BG., J Neurosci. December 1, 1995; 15 (12): 8331-44.                


Nucleotide sequence and expression of ribosomal protein S3 mRNA during embryogenesis in the Mexican axolotl (Ambystoma mexicanum)., Bhatia R, Dube DK, Lemanski LF., Biochem Mol Biol Int. May 1, 1996; 38 (6): 1079-85.


The vegetal determinants required for the Spemann organizer move equatorially during the first cell cycle., Sakai M., Development. July 1, 1996; 122 (7): 2207-14.                


Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4., Ladher R, Mohun TJ, Smith JC, Snape AM., Development. August 1, 1996; 122 (8): 2385-94.                          


Tight junctions in early amphibian development: detection of junctional cingulin from the 2-cell stage and its localization at the boundary of distinct membrane domains in dividing blastomeres in low calcium., Cardellini P, Davanzo G, Citi S., Dev Dyn. September 1, 1996; 207 (1): 104-13.              


In vivo evidence for trigeminal nerve guidance by the cement gland in Xenopus., Honoré E, Hemmati-Brivanlou A., Dev Biol. September 15, 1996; 178 (2): 363-74.              


The mRNA encoding a beta subunit of heterotrimeric GTP-binding proteins is localized to the animal pole of Xenopus laevis oocyte and embryos., Devic E, Paquereau L, Rizzoti K, Monier A, Knibiehler B, Audigier Y., Mech Dev. October 1, 1996; 59 (2): 141-51.              


Effects of intermediate filament disruption on the early development of the peripheral nervous system of Xenopus laevis., Lin W, Szaro BG., Dev Biol. October 10, 1996; 179 (1): 197-211.            


A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm., Papalopulu N, Kintner C., Development. November 1, 1996; 122 (11): 3409-18.            


Elaboration of the messenger transport organizer pathway for localization of RNA to the vegetal cortex of Xenopus oocytes., Kloc M, Larabell C, Etkin LD., Dev Biol. November 25, 1996; 180 (1): 119-30.                  


The Xenopus T-box gene, Antipodean, encodes a vegetally localised maternal mRNA and can trigger mesoderm formation., Stennard F, Carnac G, Gurdon JB., Development. December 1, 1996; 122 (12): 4179-88.      


Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning., Zhang J, King ML., Development. December 1, 1996; 122 (12): 4119-29.                  

???pagination.result.page??? 1 2 3 4 5 6 7 ???pagination.result.next???