Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1597) Expression Attributions Wiki
XB-ANAT-13

Papers associated with telencephalon (and pcna)

Limit to papers also referencing gene:
Show all telencephalon papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

β-Catenin and SOX2 Interaction Regulate Visual Experience-Dependent Cell Homeostasis in the Developing Xenopus Thalamus., Gao J., Int J Mol Sci. September 2, 2023; 24 (17):                 


Deep learning is widely applicable to phenotyping embryonic development and disease., Naert T., Development. November 1, 2021; 148 (21):                                                                 


Parallel in vivo analysis of large-effect autism genes implicates cortical neurogenesis and estrogen in risk and resilience., Willsey HR., Neuron. March 3, 2021; 109 (5): 788-804.e8.


The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos., Willsey HR., Development. June 22, 2020; 147 (21):                             


Katanin-like protein Katnal2 is required for ciliogenesis and brain development in Xenopus embryos., Willsey HR., Dev Biol. October 15, 2018; 442 (2): 276-287.                                      


Pattern of Neurogenesis and Identification of Neuronal Progenitor Subtypes during Pallial Development in Xenopus laevis., Moreno N., Front Neuroanat. March 27, 2017; 11 24.                        


5-hydroxymethylcytosine marks postmitotic neural cells in the adult and developing vertebrate central nervous system., Diotel N., J Comp Neurol. February 15, 2017; 525 (3): 478-497.  


Understanding How the Subcommissural Organ and Other Periventricular Secretory Structures Contribute via the Cerebrospinal Fluid to Neurogenesis., Guerra MM., Front Cell Neurosci. September 23, 2015; 9 480.                


Cyp19a1 (aromatase) expression in the Xenopus brain at different developmental stages., Coumailleau P., J Neuroendocrinol. April 1, 2014; .          


Simultaneous in vitro characterisation of DNA deaminase function and associated DNA repair pathways., Franchini DM., PLoS One. December 9, 2013; 8 (12): e82097.                


PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication., Bianchi J., Mol Cell. November 21, 2013; 52 (4): 566-73.          


The neurogenic factor NeuroD1 is expressed in post-mitotic cells during juvenile and adult Xenopus neurogenesis and not in progenitor or radial glial cells., D'Amico LA., PLoS One. June 11, 2013; 8 (6): e66487.          


Proliferation, migration and differentiation in juvenile and adult Xenopus laevis brains., D'Amico LA., Dev Biol. August 8, 2011; 1405 31-48.            


XRCC1 interacts with the p58 subunit of DNA Pol alpha-primase and may coordinate DNA repair and replication during S phase., Lévy N., Nucleic Acids Res. June 1, 2009; 37 (10): 3177-88.            


Replication initiation complex formation in the absence of nuclear function in Xenopus., Krasinska L., Nucleic Acids Res. April 1, 2009; 37 (7): 2238-48.            


Development of the retinotectal system in the direct-developing frog Eleutherodactylus coqui in comparison with other anurans., Schlosser G., Front Zool. June 23, 2008; 5 9.              


Thyroid hormone-upregulated expression of Musashi-1 is specific for progenitor cells of the adult epithelium during amphibian gastrointestinal remodeling., Ishizuya-Oka A., J Cell Sci. August 1, 2003; 116 (Pt 15): 3157-64.          


Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons., Gervasi C., J Comp Neurol. July 31, 2000; 423 (3): 512-31.                      


Dynamic and differential Oct-1 expression during early Xenopus embryogenesis: persistence of Oct-1 protein following down-regulation of the RNA., Veenstra GJ., Mech Dev. April 1, 1995; 50 (2-3): 103-17.                            

???pagination.result.page??? 1