Results 1 - 15 of 15 results
An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center. , Sena E., J Dev Biol. October 20, 2016; 4 (4):
Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3. , Juraver-Geslin HA ., Genesis. February 1, 2015; 53 (2): 203-24.
Direct regulation of siamois by VegT is required for axis formation in Xenopus embryo. , Li HY., Int J Dev Biol. January 1, 2015; 59 (10-12): 443-51.
Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis. , Bandín S., Front Neuroanat. January 1, 2015; 9 107.
Fezf2 promotes neuronal differentiation through localised activation of Wnt/ β-catenin signalling during forebrain development. , Zhang S ., Development. December 1, 2014; 141 (24): 4794-805.
Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells. , Perry KJ., Dev Biol. February 15, 2013; 374 (2): 281-94.
The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. , Min TH., Dev Biol. October 1, 2011; 358 (1): 262-76.
Barhl2 limits growth of the diencephalic primordium through Caspase3 inhibition of beta-catenin activation. , Juraver-Geslin HA ., Proc Natl Acad Sci U S A. February 8, 2011; 108 (6): 2288-93.
Expression of Wnt signaling components during Xenopus pronephros development. , Zhang B., PLoS One. January 1, 2011; 6 (10): e26533.
Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. , Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.
Olfactory and lens placode formation is controlled by the hedgehog-interacting protein ( Xhip) in Xenopus. , Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.
R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. , Kazanskaya O ., Dev Cell. October 1, 2004; 7 (4): 525-34.
Autoregulation of canonical Wnt signaling controls midbrain development. , Kunz M., Dev Biol. September 15, 2004; 273 (2): 390-401.
The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning. , Kazanskaya O., Development. November 1, 2000; 127 (22): 4981-92.
Xwnt-2b is a novel axis-inducing Xenopus Wnt, which is expressed in embryonic brain. , Landesman Y., Mech Dev. May 1, 1997; 63 (2): 199-209.