Results 1 - 22 of 22 results
What are the roles of retinoids, other morphogens, and Hox genes in setting up the vertebrate body axis? , Durston AJ ., Genesis. January 1, 2019; 57 (7-8): e23296.
Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis. , Morona R., J Comp Neurol. March 1, 2017; 525 (4): 715-752.
Transcriptional regulator PRDM12 is essential for human pain perception. , Chen YC , Chen YC ., Nat Genet. July 1, 2015; 47 (7): 803-8.
Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character. , Fish MB., Dev Biol. November 15, 2014; 395 (2): 317-330.
sox4 and sox11 function during Xenopus laevis eye development. , Cizelsky W., PLoS One. January 1, 2013; 8 (7): e69372.
Transcription factors involved in lens development from the preplacodal ectoderm. , Ogino H ., Dev Biol. March 15, 2012; 363 (2): 333-47.
HESX1- and TCF3-mediated repression of Wnt/ β-catenin targets is required for normal development of the anterior forebrain. , Andoniadou CL., Development. November 1, 2011; 138 (22): 4931-42.
In vitro organogenesis from undifferentiated cells in Xenopus. , Asashima M ., Dev Dyn. June 1, 2009; 238 (6): 1309-20.
The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx. , Rodríguez-Seguel E., Dev Biol. May 15, 2009; 329 (2): 258-68.
Involvement of an inner nuclear membrane protein, Nemp1, in Xenopus neural development through an interaction with the chromatin protein BAF. , Mamada H., Dev Biol. March 15, 2009; 327 (2): 497-507.
Expression study of cadherin7 and cadherin20 in the embryonic and adult rat central nervous system. , Takahashi M., BMC Dev Biol. July 28, 2008; 8 87.
Investigation of Frizzled-5 during embryonic neural development in mouse. , Burns CJ., Dev Dyn. June 1, 2008; 237 (6): 1614-26.
The homeodomain factor Xanf represses expression of genes in the presumptive rostral forebrain that specify more caudal brain regions. , Ermakova GV., Dev Biol. July 15, 2007; 307 (2): 483-97.
Alterations of rx1 and pax6 expression levels at neural plate stages differentially affect the production of retinal cell types and maintenance of retinal stem cell qualities. , Zaghloul NA ., Dev Biol. June 1, 2007; 306 (1): 222-40.
Olfactory and lens placode formation is controlled by the hedgehog-interacting protein ( Xhip) in Xenopus. , Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.
Regulation of vertebrate eye development by Rx genes. , Bailey TJ., Int J Dev Biol. January 1, 2004; 48 (8-9): 761-70.
Molecular cloning and embryonic expression of Xenopus Six homeobox genes. , Ghanbari H., Mech Dev. March 1, 2001; 101 (1-2): 271-7.
Expanded retina territory by midbrain transformation upon overexpression of Six6 ( Optx2) in Xenopus embryos. , Bernier G., Mech Dev. May 1, 2000; 93 (1-2): 59-69.
Cloning and expression of xSix3, the Xenopus homologue of murine Six3. , Zhou X ., Mech Dev. March 1, 2000; 91 (1-2): 327-30.
A novel fork head gene mediates early steps during Xenopus lens formation. , Kenyon KL ., Development. November 1, 1999; 126 (22): 5107-16.
Giant eyes in Xenopus laevis by overexpression of XOptx2. , Zuber ME ., Cell. August 6, 1999; 98 (3): 341-52.
Role of Xrx1 in Xenopus eye and anterior brain development. , Andreazzoli M ., Development. June 1, 1999; 126 (11): 2451-60.