Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (1528) Expression Attributions Wiki
XB-ANAT-14

Papers associated with diencephalon (and pomc)

Limit to papers also referencing gene:
Show all diencephalon papers
Results 1 - 37 of 37 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis., Eagleson GW., J Embryol Exp Morphol. June 1, 1986; 95 1-14.              


An NPY-like peptide may function as MSH-release inhibiting factor in Xenopus laevis., Verburg-van Kemenade BM., Peptides. January 1, 1987; 8 (1): 61-7.


Immunocytochemical analysis of proenkephalin-derived peptides in the amphibian hypothalamus and optic tectum., Merchenthaler I., Dev Biol. July 28, 1987; 416 (2): 219-27.    


Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary., Hayes WP., Development. November 1, 1990; 110 (3): 747-57.              


Expression of LIM class homeobox gene Xlim-3 in Xenopus development is limited to neural and neuroendocrine tissues., Taira M., Dev Biol. September 1, 1993; 159 (1): 245-56.              


The TRH neuronal phenotype forms embryonic cell clusters that go on to establish a regionalized cell fate in forebrain., Hayes WP., J Neurobiol. September 1, 1994; 25 (9): 1095-112.


Processing of the precursors to neurotensin and other bioactive peptides by cathepsin E., Kageyama T., J Biol Chem. August 11, 1995; 270 (32): 19135-40.


Physiologically induced Fos expression in the hypothalamo-hypophyseal system of Xenopus laevis., Ubink R., Neuroendocrinology. June 1, 1997; 65 (6): 413-22.


Sauvagine and TRH differentially stimulate proopiomelanocortin biosynthesis in the Xenopus laevis intermediate pituitary., Dotman CH., Neuroendocrinology. August 1, 1997; 66 (2): 106-13.


Distribution of pro-opiomelanocortin and its peptide end products in the brain and hypophysis of the aquatic toad, Xenopus laevis., Tuinhof R., Cell Tissue Res. May 1, 1998; 292 (2): 251-65.


Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study., Ubink R., J Comp Neurol. July 20, 1998; 397 (1): 60-8.          


Cloning and expression of two proopiomelanocortin mRNAs in the common carp (Cyprinus carpio L.)., Arends RJ., Mol Cell Endocrinol. August 25, 1998; 143 (1-2): 23-31.


Immunohistochemical localization and biochemical characterization of two novel decapeptides derived from POMC-A in the trout hypothalamus., Tollemer H., Cell Tissue Res. March 1, 1999; 295 (3): 409-17.


Timing of metamorphosis and the onset of the negative feedback loop between the thyroid gland and the pituitary is controlled by type II iodothyronine deiodinase in Xenopus laevis., Huang H., Proc Natl Acad Sci U S A. June 19, 2001; 98 (13): 7348-53.          


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM., J Comp Neurol. January 27, 2003; 456 (1): 73-83.                  


Expression of type II iodothyronine deiodinase marks the time that a tissue responds to thyroid hormone-induced metamorphosis in Xenopus laevis., Cai L., Dev Biol. February 1, 2004; 266 (1): 87-95.                


Roles of corticotropin-releasing factor, neuropeptide Y and corticosterone in the regulation of food intake in Xenopus laevis., Crespi EJ., J Neuroendocrinol. March 1, 2004; 16 (3): 279-88.


Regulation of pituitary thyrotropin gene expression during Xenopus metamorphosis: negative feedback is functional throughout metamorphosis., Manzon RG., J Endocrinol. August 1, 2004; 182 (2): 273-85.


In situ hybridization localization of TRH precursor and TRH receptor mRNAs in the brain and pituitary of Xenopus laevis., Galas L., Ann N Y Acad Sci. April 1, 2005; 1040 95-105.


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Effect of starvation on Fos and neuropeptide immunoreactivities in the brain and pituitary gland of Xenopus laevis., Calle M., Gen Comp Endocrinol. July 1, 2006; 147 (3): 237-46.        


Polychlorinated biphenyl exposure delays metamorphosis and alters thyroid hormone system gene expression in developing Xenopus laevis., Lehigh Shirey EA., Environ Res. October 1, 2006; 102 (2): 205-14.


Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis., Roubos EW., J Comp Neurol. April 1, 2008; 507 (4): 1622-38.                  


Teratogenic effects of chronic treatment with corticosterone on tadpoles of Xenopus laevis., Lorenz C., Ann N Y Acad Sci. April 1, 2009; 1163 454-6.


The organization of CRF neuronal pathways in toads: Evidence that retinal afferents do not contribute significantly to tectal CRF content., Carr JA., Brain Behav Evol. January 1, 2010; 76 (1): 71-86.


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


A developmental analysis of periodic albinism in the amphibian Xenopus laevis., Eagleson GW., Gen Comp Endocrinol. September 1, 2010; 168 (2): 302-6.        


Plasticity of melanotrope cell regulations in Xenopus laevis., Roubos EW., Eur J Neurosci. December 1, 2010; 32 (12): 2082-6.    


Expression of orexin receptors in the pituitary., Kaminski T., Vitam Horm. January 1, 2012; 89 61-73.


Thyroid hormone-dependent development in Xenopus laevis: a sensitive screen of thyroid hormone signaling disruption by municipal wastewater treatment plant effluent., Searcy BT., Gen Comp Endocrinol. May 1, 2012; 176 (3): 481-92.


Pituitary melanotrope cells of Xenopus laevis are of neural ridge origin and do not require induction by the infundibulum., Eagleson GW., Gen Comp Endocrinol. August 1, 2012; 178 (1): 116-22.            


Angiogenesis in the intermediate lobe of the pituitary gland alters its structure and function., Tanaka S., Gen Comp Endocrinol. May 1, 2013; 185 10-8.        


Ancient origins and evolutionary conservation of intracellular and neural signaling pathways engaged by the leptin receptor., Cui MY., Endocrinology. November 1, 2014; 155 (11): 4202-14.


Spatial and temporal expression profiles of urocortin 3 mRNA in the brain of the chicken (Gallus gallus)., Grommen SVH., J Comp Neurol. August 1, 2017; 525 (11): 2583-2591.


Melanocortin Receptor 4 Signaling Regulates Vertebrate Limb Regeneration., Zhang M., Dev Cell. January 1, 2018; 46 (4): 397-409.e5.                              


Distribution and neuronal circuit of spexin 1/2 neurons in the zebrafish CNS., Kim E., Sci Rep. January 1, 2019; 9 (1): 5025.              


Some aspects of the hypothalamic and pituitary development, metamorphosis, and reproductive behavior as studied in amphibians., Kikuyama S., Gen Comp Endocrinol. January 1, 2019; 284 113212.

Page(s): 1