Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1547) Expression Attributions Wiki
XB-ANAT-14

Papers associated with diencephalon (and otx2)

Limit to papers also referencing gene:
Show all diencephalon papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm., Papalopulu N., Development. November 1, 1996; 122 (11): 3409-18.            


Expression of murine Lhx5 suggests a role in specifying the forebrain., Sheng HZ., Dev Dyn. February 1, 1997; 208 (2): 266-77.


Xwnt-8 and lithium can act upon either dorsal mesodermal or neurectodermal cells to cause a loss of forebrain in Xenopus embryos., Fredieu JR., Dev Biol. June 1, 1997; 186 (1): 100-14.                


The Xenopus Emx genes identify presumptive dorsal telencephalon and are induced by head organizer signals., Pannese M., Mech Dev. April 1, 1998; 73 (1): 73-83.                


Cooperation of intrinsic and extrinsic signals in the elaboration of regional identity in the posterior cerebral cortex., Nothias F., Curr Biol. April 9, 1998; 8 (8): 459-62.  


XBF-1, a winged helix transcription factor with dual activity, has a role in positioning neurogenesis in Xenopus competent ectoderm., Bourguignon C., Development. December 1, 1998; 125 (24): 4889-900.                  


Evolutionary alteration in anterior patterning: otx2 expression in the direct developing frog Eleutherodactylus coqui., Fang H., Dev Biol. January 15, 1999; 205 (2): 233-9.        


Role of Xrx1 in Xenopus eye and anterior brain development., Andreazzoli M., Development. June 1, 1999; 126 (11): 2451-60.            


The homeobox gene, Xanf-1, can control both neural differentiation and patterning in the presumptive anterior neurectoderm of the Xenopus laevis embryo., Ermakova GV., Development. October 1, 1999; 126 (20): 4513-23.                  


Expanded retina territory by midbrain transformation upon overexpression of Six6 (Optx2) in Xenopus embryos., Bernier G., Mech Dev. May 1, 2000; 93 (1-2): 59-69.            


The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning., Kazanskaya O., Development. November 1, 2000; 127 (22): 4981-92.              


Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos., Chen Y., Mech Dev. March 1, 2001; 101 (1-2): 91-103.        


Early anteroposterior division of the presumptive neurectoderm in Xenopus., Gamse JT., Mech Dev. June 1, 2001; 104 (1-2): 21-36.      


Transgenic Xenopus embryos reveal that anterior neural development requires continued suppression of BMP signaling after gastrulation., Hartley KO., Dev Biol. October 1, 2001; 238 (1): 168-84.                


In vitro induction and transplantation of eye during early Xenopus development., Sedohara A., Dev Growth Differ. January 1, 2003; 45 (5-6): 463-71.              


Selective degradation of excess Ldb1 by Rnf12/RLIM confers proper Ldb1 expression levels and Xlim-1/Ldb1 stoichiometry in Xenopus organizer functions., Hiratani I., Development. September 1, 2003; 130 (17): 4161-75.                    


Regulation of vertebrate eye development by Rx genes., Bailey TJ., Int J Dev Biol. January 1, 2004; 48 (8-9): 761-70.    


Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways., Moore KB., Dev Cell. January 1, 2004; 6 (1): 55-67.                


Regulation of Otx2 expression and its functions in mouse epiblast and anterior neuroectoderm., Kurokawa D., Development. July 1, 2004; 131 (14): 3307-17.      


R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis., Kazanskaya O., Dev Cell. October 1, 2004; 7 (4): 525-34.                          


Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus., Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.                          


Xenopus aristaless-related homeobox (xARX) gene product functions as both a transcriptional activator and repressor in forebrain development., Seufert DW., Dev Dyn. February 1, 2005; 232 (2): 313-24.                  


Dystroglycan is required for proper retinal layering., Lunardi A., Dev Biol. February 15, 2006; 290 (2): 411-20.            


Ptf1a triggers GABAergic neuronal cell fates in the retina., Dullin JP., BMC Dev Biol. May 31, 2007; 7 110.              


The homeodomain factor Xanf represses expression of genes in the presumptive rostral forebrain that specify more caudal brain regions., Ermakova GV., Dev Biol. July 15, 2007; 307 (2): 483-97.        


Stage-specific effects of retinoic acid on gene expression during forebrain development., Eagleson GW., Brain Res Bull. March 18, 2008; 75 (2-4): 281-8.


Molecular links among the causative genes for ocular malformation: Otx2 and Sox2 coregulate Rax expression., Danno H., Proc Natl Acad Sci U S A. April 8, 2008; 105 (14): 5408-13.                        


Expression study of cadherin7 and cadherin20 in the embryonic and adult rat central nervous system., Takahashi M., BMC Dev Biol. June 23, 2008; 8 87.                


xArx2: an aristaless homolog that regulates brain regionalization during development in Xenopus laevis., Wolanski M., Genesis. January 1, 2009; 47 (1): 19-31.              


Developmental expression and regulation of the chemokine CXCL14 in Xenopus., Park BY., Int J Dev Biol. January 1, 2009; 53 (4): 535-40.                    


Involvement of an inner nuclear membrane protein, Nemp1, in Xenopus neural development through an interaction with the chromatin protein BAF., Mamada H., Dev Biol. March 15, 2009; 327 (2): 497-507.            


The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx., Rodríguez-Seguel E., Dev Biol. May 15, 2009; 329 (2): 258-68.                


In vitro organogenesis from undifferentiated cells in Xenopus., Asashima M., Dev Dyn. June 1, 2009; 238 (6): 1309-20.                      


The role of miR-124a in early development of the Xenopus eye., Qiu R., Mech Dev. October 1, 2009; 126 (10): 804-16.          


A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival., Rauschenberger K., EMBO Mol Med. February 1, 2010; 2 (2): 51-62.                        


Evolutionary origin of the Otx2 enhancer for its expression in visceral endoderm., Kurokawa D., Dev Biol. June 1, 2010; 342 (1): 110-20.                


The nephrogenic potential of the transcription factors osr1, osr2, hnf1b, lhx1 and pax8 assessed in Xenopus animal caps., Drews C., BMC Dev Biol. January 31, 2011; 11 5.              


Barhl2 limits growth of the diencephalic primordium through Caspase3 inhibition of beta-catenin activation., Juraver-Geslin HA., Proc Natl Acad Sci U S A. February 8, 2011; 108 (6): 2288-93.                    


A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer., Rankin SA, Rankin SA., Dev Biol. March 15, 2011; 351 (2): 297-310.                            


Notch destabilises maternal beta-catenin and restricts dorsal-anterior development in Xenopus., Acosta H., Development. June 1, 2011; 138 (12): 2567-79.                          


Xenopus laevis insulin receptor substrate IRS-1 is important for eye development., Bugner V., Dev Dyn. July 1, 2011; 240 (7): 1705-15.            


The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo., Min TH., Dev Biol. October 1, 2011; 358 (1): 262-76.                            


Transcription factors involved in lens development from the preplacodal ectoderm., Ogino H., Dev Biol. March 15, 2012; 363 (2): 333-47.      


Plasma membrane cholesterol depletion disrupts prechordal plate and affects early forebrain patterning., Reis AH., Dev Biol. May 15, 2012; 365 (2): 350-62.                    


The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis., Parlier D., Dev Biol. January 1, 2013; 373 (1): 39-52.                              


An essential role for LPA signalling in telencephalon development., Geach TJ., Development. February 1, 2014; 141 (4): 940-9.                            


Wiring the retinal circuits activated by light during early development., Bertolesi GE., Neural Dev. February 13, 2014; 9 3.              


Ras-dva1 small GTPase regulates telencephalon development in Xenopus laevis embryos by controlling Fgf8 and Agr signaling at the anterior border of the neural plate., Tereshina MB., Biol Open. March 15, 2014; 3 (3): 192-203.                        


Sp8 regulates inner ear development., Chung HA., Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6329-34.                                                    


Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character., Fish MB., Dev Biol. November 15, 2014; 395 (2): 317-330.                  

???pagination.result.page??? 1 2 ???pagination.result.next???