Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (74) Attributions Wiki
XB-STAGE-14

Papers associated with embryonic stage

Limit to papers also referencing gene:
Results 1 - 50 of 74 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Differential requirement of bone morphogenetic protein receptors Ia (ALK3) and Ib (ALK6) in early embryonic patterning and neural crest development., Schille C, Heller J, Schambony A., BMC Dev Biol. January 19, 2016; 16 1.                          


Normal table of embryonic development in the four-toed salamander, Hemidactylium scutatum., Hurney CA, Babcock SK, Shook DR, Pelletier TM, Turner SD, Maturo J, Cogbill S, Snow MC, Kinch K., Mech Dev. May 1, 2015; 136 99-110.


Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis., Bandín S, Morona R, González A., Front Neuroanat. January 1, 2015; 9 107.                                                    


Cyp19a1 (aromatase) expression in the Xenopus brain at different developmental stages., Coumailleau P, Kah O., J Neuroendocrinol. February 26, 2014; .          


Differential regulation of two histidine ammonia-lyase genes during Xenopus development implicates distinct functions during thyroid hormone-induced formation of adult stem cells., Luu N, Wen L, Fu L, Fujimoto K, Shi YB, Sun G., Cell Biosci. November 13, 2013; 3 (1): 43.              


Regional expression of Pax7 in the brain of Xenopus laevis during embryonic and larval development., Bandín S, Morona R, Moreno N, González A., Front Neuroanat. January 1, 2013; 7 48.                    


Histone deacetylases are required for amphibian tail and limb regeneration but not development., Taylor AJ, Beck CW., Mech Dev. September 1, 2012; 129 (9-12): 208-18.            


Identification and expression analysis of GPAT family genes during early development of Xenopus laevis., Bertolesi GE, Iannattone S, Johnston J, Zaremberg V, McFarlane S., Gene Expr Patterns. August 1, 2012; 12 (7-8): 219-27.                            


Internalizing the vegetal cell mass before and during amphibian gastrulation: vegetal rotation and related movements., Winklbauer R, Damm EW., Wiley Interdiscip Rev Dev Biol. March 1, 2012; 1 (2): 301-6.    


Expression of serotonergic system components during early Xenopus embryogenesis., Nikishin DA, Kremnyov SV, Konduktorova VV, Shmukler YB., Int J Dev Biol. January 1, 2012; 56 (5): 385-91.                          


KDEL tagging: a method for generating dominant-negative inhibitors of the secretion of TGF-beta superfamily proteins., Matsukawa S, Moriyama Y, Hayata T, Sasaki H, Ito Y, Asashima M, Kuroda H., Int J Dev Biol. January 1, 2012; 56 (5): 351-6.        


Retinoic acid is a key regulatory switch determining the difference between lung and thyroid fates in Xenopus laevis., Wang JH, Deimling SJ, D'Alessandro NE, Zhao L, Possmayer F, Drysdale TA., BMC Dev Biol. November 15, 2011; 11 75.                            


Cloning and spatiotemporal expression of RIC-8 in Xenopus embryogenesis., Maldonado-Agurto R, Toro G, Fuentealba J, Arriagada C, Campos T, Albistur M, Henriquez JP, Olate J, Hinrichs MV, Torrejón M., Gene Expr Patterns. October 1, 2011; 11 (7): 401-8.          


Novel strategy for subretinal delivery in Xenopus., Gonzalez-Fernandez F, Dann CA, Garlipp MA., Mol Vis. March 23, 2011; 17 2956-69.                      


The thyroid hormone responsive protein (THRP) has a critical role in the embryogenesis of Xenopus laevis., Lim W, Haas MJ, Mooradian AD., Neurosci Lett. January 25, 2011; 488 (3): 272-4.


Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis., Irie N, Kuratani S., Nat Commun. January 1, 2011; 2 248.      


MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization., Suzuki M, Hara Y, Takagi C, Yamamoto TS, Ueno N., Development. July 1, 2010; 137 (14): 2329-39.                                                      


B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo., Okuda Y, Ogura E, Kondoh H, Kamachi Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.                


Xenopus Bsx links daily cell cycle rhythms and pineal photoreceptor fate., D'Autilia S, Broccoli V, Barsacchi G, Andreazzoli M., Proc Natl Acad Sci U S A. April 6, 2010; 107 (14): 6352-7.          


Long-term consequences of Sox9 depletion on inner ear development., Park BY, Saint-Jeannet JP., Dev Dyn. April 1, 2010; 239 (4): 1102-12.          


E3 ligase Nedd4 promotes axon branching by downregulating PTEN., Drinjakovic J, Jung H, Campbell DS, Strochlic L, Dwivedy A, Holt CE., Neuron. February 11, 2010; 65 (3): 341-57.                  


In vitro organogenesis from undifferentiated cells in Xenopus., Asashima M, Ito Y, Chan T, Michiue T, Nakanishi M, Suzuki K, Hitachi K, Okabayashi K, Kondow A, Ariizumi T., Dev Dyn. June 1, 2009; 238 (6): 1309-20.                      


Wnt6 signaling regulates heart muscle development during organogenesis., Lavery DL, Martin J, Turnbull YD, Hoppler S., Dev Biol. November 15, 2008; 323 (2): 177-88.            


Spatiotemporal regulation of fibroblast growth factor signal blocking for endoderm formation in Xenopus laevis., Cha SW, Lee JW, Lee JW, Hwang YS, Chae JP, Park KM, Cho HJ, Kim DS, Bae YC, Park MJ., Exp Mol Med. October 31, 2008; 40 (5): 550-7.


Myosin-10 and actin filaments are essential for mitotic spindle function., Woolner S, O'Brien LL, Wiese C, Bement WM., J Cell Biol. July 14, 2008; 182 (1): 77-88.                


A function for dystroglycan in pronephros development in Xenopus laevis., Bello V, Sirour C, Moreau N, Denker E, Darribère T., Dev Biol. May 1, 2008; 317 (1): 106-20.          


Collectrin/tmem27 is expressed at high levels in all segments of the developing Xenopus pronephric nephron and in the Wolffian duct., McCoy KE, Zhou X, Zhou X, Vize PD., Gene Expr Patterns. April 1, 2008; 8 (4): 271-4.        


The α1 subunit of nicotinic acetylcholine receptors in the inner ear: transcriptional regulation by ATOH1 and co-expression with the γ subunit in hair cells., Scheffer D, Sage C, Plazas PV, Huang M, Wedemeyer C, Zhang DS, Chen ZY, Elgoyhen AB, Corey DP, Pingault V., J Neurochem. December 1, 2007; 103 (6): 2651-64.


The prepattern transcription factor Irx3 directs nephron segment identity., Reggiani L, Raciti D, Airik R, Kispert A, Brändli AW., Genes Dev. September 15, 2007; 21 (18): 2358-70.                


Transient early embryonic expression of Nkx2-5 mutations linked to congenital heart defects in human causes heart defects in Xenopus laevis., Bartlett HL, Sutherland L, Kolker SJ, Welp C, Tajchman U, Desmarais V, Weeks DL., Dev Dyn. September 1, 2007; 236 (9): 2475-84.    


An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption., Fini JB, Le Mevel S, Turque N, Palmier K, Zalko D, Cravedi JP, Demeneix BA., Environ Sci Technol. August 15, 2007; 41 (16): 5908-14.


Identification of novel members of the Xenopus Ca2+ -dependent lectin family and analysis of their gene expression during tail regeneration and development., Ishino T, Kunieda T, Natori S, Sekimizu K, Kubo T., J Biochem. April 1, 2007; 141 (4): 479-88.


The presumptive floor plate (notoplate) induces behaviors associated with convergent extension in medial but not lateral neural plate cells of Xenopus., Ezin AM, Skoglund P, Keller R., Dev Biol. December 15, 2006; 300 (2): 670-86.    


Reduction of XNkx2-10 expression leads to anterior defects and malformation of the embryonic heart., Allen BG, Allen-Brady K, Weeks DL., Mech Dev. October 1, 2006; 123 (10): 719-29.          


FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development., Urban AE, Zhou X, Ungos JM, Raible DW, Altmann CR, Vize PD., Dev Biol. September 1, 2006; 297 (1): 103-17.                    


Retinoic acid signaling is essential for formation of the heart tube in Xenopus., Collop AH, Broomfield JA, Chandraratna RA, Yong Z, Deimling SJ, Kolker SJ, Weeks DL, Drysdale TA., Dev Biol. March 1, 2006; 291 (1): 96-109.                  


Lens-forming competence in the epidermis of Xenopus laevis during development., Arresta E, Bernardini S, Gargioli C, Filoni S, Cannata SM., J Exp Zool A Comp Exp Biol. January 1, 2005; 303 (1): 1-12.


Cloning and characterization of a novel Ca2+/calmodulin-dependent protein kinase I homologue in Xenopus laevis., Kinoshita S, Sueyoshi N, Shoju H, Suetake I, Nakamura M, Tajima S, Kameshita I., J Biochem. May 1, 2004; 135 (5): 619-30.


A PTP-PEST-like protein affects alpha5beta1-integrin-dependent matrix assembly, cell adhesion, and migration in Xenopus gastrula., Cousin H, Alfandari D, Alfandari D., Dev Biol. January 15, 2004; 265 (2): 416-32.                  


A restrictive role for Hedgehog signalling during otic specification in Xenopus., Koebernick K, Hollemann T, Pieler T., Dev Biol. August 15, 2003; 260 (2): 325-38.              


Coordination of BMP-3b and cerberus is required for head formation of Xenopus embryos., Hino J, Nishimatsu S, Nagai T, Matsuo H, Kangawa K, Nohno T., Dev Biol. August 1, 2003; 260 (1): 138-57.                            


Molecular components of the endoderm specification pathway in Xenopus tropicalis., D'Souza A, Lee M, Taverner N, Mason J, Carruthers S, Smith JC, Amaya E, Papalopulu N, Zorn AM., Dev Dyn. January 1, 2003; 226 (1): 118-27.                            


Role of 14-3-3 proteins in early Xenopus development., Wu C, Muslin AJ., Mech Dev. November 1, 2002; 119 (1): 45-54.            


Regulated proteolysis of Xom mediates dorsoventral pattern formation during early Xenopus development., Zhu Z, Kirschner M., Dev Cell. October 1, 2002; 3 (4): 557-68.


Localization of choline acetyltransferase in the developing and adult retina of Xenopus laevis., López JM, Moreno N, González A., Neurosci Lett. September 13, 2002; 330 (1): 61-4.


Expression and function of Xenopus laevis p75(NTR) suggest evolution of developmental regulatory mechanisms., Hutson LD, Bothwell M., J Neurobiol. November 5, 2001; 49 (2): 79-98.                      


Functional communication between endogenous BRCA1 and its partner, BARD1, during Xenopus laevis development., Joukov V, Chen J, Fox EA, Green JB, Green JB, Livingston DM., Proc Natl Acad Sci U S A. October 9, 2001; 98 (21): 12078-83.                


Cloning and characterization of a novel serine/threonine protein kinase gene expressed predominantly in developing brain., Nara K, Akasako Y, Matsuda Y, Fukazawa Y, Iwashita S, Kataoka M, Nagai Y., Eur J Biochem. May 1, 2001; 268 (9): 2642-51.


Xenopus brevican is expressed in the notochord and the brain during early embryogenesis., Sander V, Müllegger J, Lepperdinger G., Mech Dev. April 1, 2001; 102 (1-2): 251-3.      


Identification of different forms of calpastatin mRNA co-expressed in the notochord of Xenopus laevis embryos., Marracci S, Rossi C, Nardi I., Mech Dev. July 1, 2000; 95 (1-2): 249-52.  

Page(s): 1 2 Next

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556