Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2282) Expression Attributions Wiki
XB-ANAT-1506

Papers associated with skeletal element (and sox9)

Limit to papers also referencing gene:
Show all skeletal element papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Common features of cartilage maturation are not conserved in an amphibian model., Nguyen JKB., Dev Dyn. November 1, 2023; 252 (11): 1375-1390.                


Phenotype-genotype relationships in Xenopus sox9 crispants provide insights into campomelic dysplasia and vertebrate jaw evolution., Hossain N., Dev Growth Differ. October 1, 2023; 65 (8): 481-497.                  


Adverse Effect of Metallic Gold and Silver Nanoparticles on Xenopus laevis Embryogenesis., Carotenuto R., Nanomaterials (Basel). September 4, 2023; 13 (17):                   


Downregulation of Yap1 during limb regeneration results in defective bone formation in axolotl., Bay S., Dev Biol. June 2, 2023; 500 31-39.              


Zmym4 is required for early cranial gene expression and craniofacial cartilage formation., Jourdeuil K., Front Cell Dev Biol. January 1, 2023; 11 1274788.          


16p12.1 Deletion Orthologs are Expressed in Motile Neural Crest Cells and are Important for Regulating Craniofacial Development in Xenopus laevis., Lasser M., Front Genet. January 1, 2022; 13 833083.                        


Function of chromatin modifier Hmgn1 during neural crest and craniofacial development., Ihewulezi C., Genesis. October 1, 2021; 59 (10): e23447.              


Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease., Getwan M., Proc Natl Acad Sci U S A. September 28, 2021; 118 (39):                                                   


The Role of RNA-Binding Proteins in Vertebrate Neural Crest and Craniofacial Development., Forman TE., J Dev Biol. August 27, 2021; 9 (3):   


Fibroblast dedifferentiation as a determinant of successful regeneration., Lin TY., Dev Cell. May 17, 2021; 56 (10): 1541-1551.e6.                    


Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway., Wang H., Development. May 15, 2021; 148 (10):                                           


4-Octylphenol induces developmental abnormalities and interferes the differentiation of neural crest cells in Xenopus laevis embryos., Xu Y., Environ Pollut. April 1, 2021; 274 116560.  


Using Xenopus to analyze neurocristopathies like Kabuki syndrome., Schwenty-Lara J., Genesis. February 1, 2021; 59 (1-2): e23404.      


The RNA helicase DDX3 induces neural crest by promoting AKT activity., Perfetto M., Development. January 19, 2021; 148 (2):                           


Paired Box 9 (PAX9), the RNA polymerase II transcription factor, regulates human ribosome biogenesis and craniofacial development., Farley-Barnes KI., PLoS Genet. August 19, 2020; 16 (8): e1008967.                                    


Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development., Shah AM., Dis Model Mech. March 3, 2020; 13 (3):                                               


Disrupted ER membrane protein complex-mediated topogenesis drives congenital neural crest defects., Marquez J., J Clin Invest. February 3, 2020; 130 (2): 813-826.                                


Single Amino Acid Change Underlies Distinct Roles of H2A.Z Subtypes in Human Syndrome., Greenberg RS., Cell. September 5, 2019; 178 (6): 1421-1436.e24.                                


A new transgenic reporter line reveals Wnt-dependent Snai2 re-expression and cranial neural crest differentiation in Xenopus., Li J., Sci Rep. August 1, 2019; 9 (1): 11191.              


Adaptive correction of craniofacial defects in pre-metamorphic Xenopus laevis tadpoles involves thyroid hormone-independent tissue remodeling., Pinet K., Development. July 22, 2019; 146 (14):                               


Epithelial-Mesenchymal Transition Promotes the Differentiation Potential of Xenopus tropicalis Immature Sertoli Cells., Nguyen TMX., Stem Cells Int. May 5, 2019; 2019 8387478.                                            


Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development., Kim Y., Epigenetics Chromatin. December 6, 2018; 11 (1): 72.                


Gli2 is required for the induction and migration of Xenopus laevis neural crest., Cerrizuela S., Mech Dev. December 1, 2018; 154 219-239.                      


ITGBL1 modulates integrin activity to promote cartilage formation and protect against arthritis., Song EK., Sci Transl Med. October 10, 2018; 10 (462):   


Xenopus ADAM19 regulates Wnt signaling and neural crest specification by stabilizing ADAM13., Li J., Development. April 4, 2018; 145 (7):                         


Neural crest development in Xenopus requires Protocadherin 7 at the lateral neural crest border., Bradley RS., Mech Dev. February 1, 2018; 149 41-52.                


PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation., Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.                                


E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells., Kennedy AE., PLoS One. September 8, 2017; 12 (9): e0185729.                      


WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis., Nalesso G., Ann Rheum Dis. January 1, 2017; 76 (1): 218-226.              


The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification., Hatch VL., Dev Biol. August 15, 2016; 416 (2): 361-72.                                    


Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome., Devotta A., Dev Biol. July 15, 2016; 415 (2): 371-382.                      


Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin., Gouignard N., Dis Model Mech. June 1, 2016; 9 (6): 607-20.                                      


Xenopus Limb bud morphogenesis., Keenan SR., Dev Dyn. March 1, 2016; 245 (3): 233-43.            


Hmga2 is required for neural crest cell specification in Xenopus laevis., Macrì S., Dev Biol. March 1, 2016; 411 (1): 25-37.                                        


Functional joint regeneration is achieved using reintegration mechanism in Xenopus laevis., Tsutsumi R., Regeneration (Oxf). February 1, 2016; 3 (1): 26-38.                    


Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration., Wang YH., Mech Dev. November 1, 2015; 138 Pt 3 256-67.                


Evidence for an amphibian sixth digit., Hayashi S., Zoological Lett. June 15, 2015; 1 17.                  


The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus., Griffin JN., PLoS Genet. March 10, 2015; 11 (3): e1005018.                              


Snail2/Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development., Tien CL., Development. February 15, 2015; 142 (4): 722-31.                


A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements., Square T., Dev Biol. January 15, 2015; 397 (2): 293-304.                                            


A Molecular atlas of Xenopus respiratory system development., Rankin SA, Rankin SA., Dev Dyn. January 1, 2015; 244 (1): 69-85.                    


Temporal and spatial expression analysis of peripheral myelin protein 22 (Pmp22) in developing Xenopus., Tae HJ., Gene Expr Patterns. January 1, 2015; 17 (1): 26-30.              


The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling., Jacox L., Cell Rep. July 24, 2014; 8 (2): 596-609.                            


Ectopic blastema induction by nerve deviation and skin wounding: a new regeneration model in Xenopus laevis., Mitogawa K., Regeneration (Oxf). May 28, 2014; 1 (2): 26-36.            


Role of Sp5 as an essential early regulator of neural crest specification in xenopus., Park DS., Dev Dyn. December 1, 2013; 242 (12): 1382-94.                


Attenuation of bone morphogenetic protein signaling during amphibian limb development results in the generation of stage-specific defects., Jones TE., J Anat. November 1, 2013; 223 (5): 474-88.  


Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos., Milet C., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.                      


The protein kinase MLTK regulates chondrogenesis by inducing the transcription factor Sox6., Suzuki T., Development. August 1, 2012; 139 (16): 2988-98.                        


Induction of the neural crest state: control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions., Prasad MS., Dev Biol. June 1, 2012; 366 (1): 10-21.


RIPPLY3 is a retinoic acid-inducible repressor required for setting the borders of the pre-placodal ectoderm., Janesick A., Development. March 1, 2012; 139 (6): 1213-24.                        

???pagination.result.page??? 1 2 ???pagination.result.next???