Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (209) Expression Attributions Wiki
XB-ANAT-1581

Papers associated with neural fold (and snai1)

Limit to papers also referencing gene:
Show all neural fold papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL., PLoS Biol. October 19, 2017; 15 (10): e2004045.                                              


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers., Plouhinec JL., Dev Biol. February 15, 2014; 386 (2): 461-72.                                            


Early neural crest induction requires an initial inhibition of Wnt signals., Steventon B., Dev Biol. May 1, 2012; 365 (1): 196-207.              


Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest., Agüero TH., Dev Biol. April 15, 2012; 364 (2): 99-113.                    


Nectin-2 and N-cadherin interact through extracellular domains and induce apical accumulation of F-actin in apical constriction of Xenopus neural tube morphogenesis., Morita H., Development. April 1, 2010; 137 (8): 1315-25.                            


A microarray screen for direct targets of Zic1 identifies an aquaporin gene, aqp-3b, expressed in the neural folds., Cornish EJ., Dev Dyn. May 1, 2009; 238 (5): 1179-94.                


Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm., Carmona-Fontaine C., Dev Biol. September 15, 2007; 309 (2): 208-21.              


Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction., Monsoro-Burq AH., Dev Cell. February 1, 2005; 8 (2): 167-78.            


A slug, a fox, a pair of sox: transcriptional responses to neural crest inducing signals., Heeg-Truesdell E., Birth Defects Res C Embryo Today. June 1, 2004; 72 (2): 124-39.      


Interplay between Notch signaling and the homeoprotein Xiro1 is required for neural crest induction in Xenopus embryos., Glavic A., Development. January 1, 2004; 131 (2): 347-59.              


Regulation of Msx genes by a Bmp gradient is essential for neural crest specification., Tribulo C., Development. December 1, 2003; 130 (26): 6441-52.            


The RNA-binding protein Vg1 RBP is required for cell migration during early neural development., Yaniv K., Development. December 1, 2003; 130 (23): 5649-61.              


Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals., Monsoro-Burq AH., Development. July 1, 2003; 130 (14): 3111-24.                


The protooncogene c-myc is an essential regulator of neural crest formation in xenopus., Bellmeyer A., Dev Cell. June 1, 2003; 4 (6): 827-39.        


Snail precedes slug in the genetic cascade required for the specification and migration of the Xenopus neural crest., Aybar MJ, Aybar MJ., Development. February 1, 2003; 130 (3): 483-94.                


Xenopus cadherin-11 restrains cranial neural crest migration and influences neural crest specification., Borchers A., Development. August 1, 2001; 128 (16): 3049-60.                      


A novel member of the Xenopus Zic family, Zic5, mediates neural crest development., Nakata K., Mech Dev. December 1, 2000; 99 (1-2): 83-91.      


Relationship between gene expression domains of Xsnail, Xslug, and Xtwist and cell movement in the prospective neural crest of Xenopus., Linker C., Dev Biol. August 15, 2000; 224 (2): 215-25.              


The role in neural patterning of translation initiation factor eIF4AII; induction of neural fold genes., Morgan R., Development. July 1, 1997; 124 (14): 2751-60.        


Distinct elements of the xsna promoter are required for mesodermal and ectodermal expression., Mayor R., Development. November 1, 1993; 119 (3): 661-71.                  


Expression of Xenopus snail in mesoderm and prospective neural fold ectoderm., Essex LJ., Dev Dyn. October 1, 1993; 198 (2): 108-22.              

???pagination.result.page??? 1