Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (209) Expression Attributions Wiki
XB-ANAT-1581

Papers associated with neural fold (and pax3)

Limit to papers also referencing gene:
Show all neural fold papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL., PLoS Biol. October 19, 2017; 15 (10): e2004045.                                              


Xenopus Nkx6.3 is a neural plate border specifier required for neural crest development., Zhang Z., PLoS One. December 15, 2014; 9 (12): e115165.            


Developmental expression and role of Kinesin Eg5 during Xenopus laevis embryogenesis., Fernández JP., Dev Dyn. April 1, 2014; 243 (4): 527-40.              


Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers., Plouhinec JL., Dev Biol. February 15, 2014; 386 (2): 461-72.                                            


Calpain2 protease: A new member of the Wnt/Ca(2+) pathway modulating convergent extension movements in Xenopus., Zanardelli S., Dev Biol. December 1, 2013; 384 (1): 83-100.                        


Role of Sp5 as an essential early regulator of neural crest specification in xenopus., Park DS., Dev Dyn. December 1, 2013; 242 (12): 1382-94.                


Essential role of AWP1 in neural crest specification in Xenopus., Seo JH., Int J Dev Biol. January 1, 2013; 57 (11-12): 829-36.                  


Early neural crest induction requires an initial inhibition of Wnt signals., Steventon B., Dev Biol. May 1, 2012; 365 (1): 196-207.              


Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest., Agüero TH., Dev Biol. April 15, 2012; 364 (2): 99-113.                    


Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway., Takahashi C., Int J Dev Biol. January 1, 2012; 56 (5): 393-402.                  


Origin and segregation of cranial placodes in Xenopus laevis., Pieper M., Dev Biol. December 15, 2011; 360 (2): 257-75.                        


MIM regulates vertebrate neural tube closure., Liu W., Development. May 1, 2011; 138 (10): 2035-47.                            


The RNA-binding protein Xp54nrb isolated from a Ca²+-dependent screen is expressed in neural structures during Xenopus laevis development., Neant I., Int J Dev Biol. January 1, 2011; 55 (10-12): 923-31.        


Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development., Gutkovich YE., Dev Biol. February 1, 2010; 338 (1): 50-62.                  


Involvement of Neptune in induction of the hatching gland and neural crest in the Xenopus embryo., Kurauchi T., Differentiation. January 1, 2010; 79 (4-5): 251-9.                


The posteriorizing gene Gbx2 is a direct target of Wnt signalling and the earliest factor in neural crest induction., Li B., Development. October 1, 2009; 136 (19): 3267-78.            


Fgf8a induces neural crest indirectly through the activation of Wnt8 in the paraxial mesoderm., Hong CS., Development. December 1, 2008; 135 (23): 3903-10.          


Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways., Zhao H., Development. April 1, 2008; 135 (7): 1283-93.                            


Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm., Carmona-Fontaine C., Dev Biol. September 15, 2007; 309 (2): 208-21.              


Induction and specification of cranial placodes., Schlosser G., Dev Biol. June 15, 2006; 294 (2): 303-51.                


Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus., Chen JA., Mech Dev. March 1, 2005; 122 (3): 307-31.                                                                                                                      


Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction., Monsoro-Burq AH., Dev Cell. February 1, 2005; 8 (2): 167-78.            


Molecular anatomy of placode development in Xenopus laevis., Schlosser G., Dev Biol. July 15, 2004; 271 (2): 439-66.                          


A slug, a fox, a pair of sox: transcriptional responses to neural crest inducing signals., Heeg-Truesdell E., Birth Defects Res C Embryo Today. June 1, 2004; 72 (2): 124-39.      


The RNA-binding protein Vg1 RBP is required for cell migration during early neural development., Yaniv K., Development. December 1, 2003; 130 (23): 5649-61.              


Neural tube closure requires Dishevelled-dependent convergent extension of the midline., Wallingford JB., Development. December 1, 2002; 129 (24): 5815-25.        


Repressor element-1 silencing transcription/neuron-restrictive silencer factor is required for neural sodium channel expression during development of Xenopus., Armisén R., J Neurosci. October 1, 2002; 22 (19): 8347-51.                


Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension., Davidson LA., Development. October 1, 1999; 126 (20): 4547-56.              

???pagination.result.page??? 1