Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (740) Expression Attributions Wiki
XB-ANAT-1582

Papers associated with animal pole

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The cortex of Xenopus laevis embryos: regional differences in composition and biological activity., Tomkins R., Proc Natl Acad Sci U S A. December 1, 1971; 68 (12): 2921-3.


Xenopus laevis cement gland as an experimental model for embryonic differentiation. I. In vitro stimulation of differentiation by ammonium chloride., Picard JJ., J Embryol Exp Morphol. July 1, 1975; 33 (4): 957-67.


Mechanism for the selection of nuclear polypeptides in Xenopus oocytes., Feldherr CM., J Cell Biol. July 1, 1978; 78 (1): 168-75.


An ultrastructural study of the effects of wheat germ agglutinin (WGA) on cell cortex organization during the first cleavage of Xenopus laevis eggs. II. Cortical wound healing., Geuskens M., J Cell Sci. June 1, 1979; 37 59-67.


An ultrastructural study of the effects of wheat germ agglutinin (WGA) on cell cortex organization during the first cleavage of Xenopus laevis eggs. I. Inhibition of furrow formation., Geuskens M., J Cell Sci. June 1, 1979; 37 47-58.


A cytoplasmic clock with the same period as the division cycle in Xenopus eggs., Hara K., Proc Natl Acad Sci U S A. January 1, 1980; 77 (1): 462-6.


Germinal vesicle breakdown in the Xenopus laevis oocyte: description of a transient microtubular structure., Huchon D., Reprod Nutr Dev. January 1, 1981; 21 (1): 135-48.


An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis., Keller RE., J Exp Zool. April 1, 1981; 216 (1): 81-101.


In vitro induction of germinal vesicle breakdown in Xenopus laevis oocytes by melittin., Deshpande AK., Differentiation. January 1, 1982; 21 (2): 127-32.


The spatial pattern of RNA in fully grown oocytes of an amphibian, Xenopus laevis., Capco DG., J Exp Zool. February 1, 1982; 219 (2): 147-54.


Conditioning of a culture substratum by the ectodermal layer promotes attachment and oriented locomotion by amphibian gastrula mesodermal cells., Nakatsuji N., J Cell Sci. January 1, 1983; 59 43-60.


Comparative study of extracellular fibrils on the ectodermal layer in gastrulae of five amphibian species., Nakatsuji N., J Cell Sci. January 1, 1983; 59 61-70.


Clonal organization of the central nervous system of the frog. III. Clones stemming from individual blastomeres of the 128-, 256-, and 512-cell stages., Jacobson M., J Neurosci. May 1, 1983; 3 (5): 1019-38.


Craniofacial malformation in Xenopus laevis tadpoles caused by the exposure of early embryos to ethanol., Nakatsuji N., Teratology. October 1, 1983; 28 (2): 299-305.


Patterns of junctional communication in the early amphibian embryo., Guthrie SC., Nature. September 13, 1984; 311 (5982): 149-51.


Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies., Dale L., J Embryol Exp Morphol. October 1, 1985; 89 289-312.      


Cytoskeletal changes during oogenesis and early development of Xenopus laevis., Wylie CC., J Cell Sci Suppl. January 1, 1986; 5 329-41.          


Development of the ectoderm in Xenopus: tissue specification and the role of cell association and division., Jones EA., Cell. January 31, 1986; 44 (2): 345-55.                


Cell interactions and the control of gene activity during early development of Xenopus laevis., Sargent TD., Dev Biol. March 1, 1986; 114 (1): 238-46.


Membrane protein redistribution during Xenopus first cleavage., Byers TJ., J Cell Biol. June 1, 1986; 102 (6): 2176-84.


Induction of neural cell adhesion molecule (NCAM) in Xenopus embryos., Jacobson M., Dev Biol. August 1, 1986; 116 (2): 524-31.            


Presumptive mesoderm cells from Xenopus laevis gastrulae attach to and migrate on substrata coated with fibronectin or laminin., Nakatsuji N., J Cell Sci. December 1, 1986; 86 109-18.


A mesoderm-inducing factor is produced by Xenopus cell line., Smith JC., Development. January 1, 1987; 99 (1): 3-14.              


Changes in states of commitment of single animal pole blastomeres of Xenopus laevis., Snape A., Dev Biol. February 1, 1987; 119 (2): 503-10.


The midblastula cell cycle transition and the character of mesoderm in u.v.-induced nonaxial Xenopus development., Cooke J., Development. February 1, 1987; 99 (2): 197-210.              


Functional gap junctions are not required for muscle gene activation by induction in Xenopus embryos., Warner A., J Cell Biol. March 1, 1987; 104 (3): 557-64.


Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction., Kintner CR., Development. March 1, 1987; 99 (3): 311-25.                  


Fate map for the 32-cell stage of Xenopus laevis., Dale L., Development. April 1, 1987; 99 (4): 527-51.                


Cell-type-specific expression of epidermal cytokeratin genes during gastrulation of Xenopus laevis., Jamrich M., Genes Dev. April 1, 1987; 1 (2): 124-32.                


A maternal mRNA localized to the animal pole of Xenopus eggs encodes a subunit of mitochondrial ATPase., Weeks DL., Proc Natl Acad Sci U S A. May 1, 1987; 84 (9): 2798-802.


Fates of the blastomeres of the 32-cell-stage Xenopus embryo., Moody SA., Dev Biol. August 1, 1987; 122 (2): 300-19.      


The Xenopus animal pole blastomere., Smith JC., Bioessays. November 1, 1987; 7 (5): 229-34.


The organization of mesodermal pattern in Xenopus laevis: experiments using a Xenopus mesoderm-inducing factor., Cooke J., Development. December 1, 1987; 101 (4): 893-908.            


The development of an assay to detect mRNAs that affect early development., Woodland HR., Development. December 1, 1987; 101 (4): 925-30.


A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-beta., Weeks DL., Cell. December 4, 1987; 51 (5): 861-7.        


Regulatory factors of embryonic stem cells., Heath JK., J Cell Sci Suppl. January 1, 1988; 10 257-66.


Expression and segregation of nucleoplasmin during development in Xenopus., Litvin J., Development. January 1, 1988; 102 (1): 9-21.                    


Dorsal and ventral cells of cleavage-stage Xenopus embryos show the same ability to induce notochord and somite formation., Pierce KE., Dev Biol. April 1, 1988; 126 (2): 228-32.


The function of the nuclear envelope in nuclear protein accumulation., Zimmer FJ., J Cell Biol. May 1, 1988; 106 (5): 1435-44.            


Purification, partial characterization and biological effects of the XTC mesoderm-inducing factor., Smith JC., Development. July 1, 1988; 103 (3): 591-600.


Patterns of junctional communication during development of the early amphibian embryo., Guthrie S., Development. August 1, 1988; 103 (4): 769-83.


Inositol trisphosphate-induced membrane potential oscillations in Xenopus oocytes., Berridge MJ., J Physiol. September 1, 1988; 403 589-99.


Hemispheric asymmetry of rapid chloride responses to inositol trisphosphate and calcium in Xenopus oocytes., Lupu-Meiri M., FEBS Lett. November 21, 1988; 240 (1-2): 83-7.


Mesoderm induction in Xenopus laevis: responding cells must be in contact for mesoderm formation but suppression of epidermal differentiation can occur in single cells., Symes K., Development. December 1, 1988; 104 (4): 609-18.


Inducing factors and the control of mesodermal pattern in Xenopus laevis., Smith JC., Development. January 1, 1989; 107 Suppl 149-59.


Potentiation by the lithium ion of morphogenetic responses to a Xenopus inducing factor., Cooke J., Development. March 1, 1989; 105 (3): 549-58.


Analysis of competence: receptors for fibroblast growth factor in early Xenopus embryos., Gillespie LL., Development. May 1, 1989; 106 (1): 203-8.


Mesoderm-inducing properties of INT-2 and kFGF: two oncogene-encoded growth factors related to FGF., Paterno GD., Development. May 1, 1989; 106 (1): 79-83.


Clonal analysis of mesoderm induction in Xenopus laevis., Godsave SF., Dev Biol. August 1, 1989; 134 (2): 486-90.


Tissue-specific processing and polarized compartmentalization of clone-produced cholinesterase in microinjected Xenopus oocytes., Dreyfus PA., Cell Mol Neurobiol. September 1, 1989; 9 (3): 323-41.

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???