Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (624) Expression Attributions Wiki
XB-ANAT-1585

Papers associated with non-neural ectoderm (and zic1)

Limit to papers also referencing gene:
Show all non-neural ectoderm papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Xenopus Dusp6 modulates FGF signaling to precisely pattern pre-placodal ectoderm., Tsukano K., Dev Biol. August 1, 2022; 488 81-90.                          


Anterior patterning genes induced by Zic1 are sensitive to retinoic acid and its metabolite, 4-oxo-RA., Dubey A., Dev Dyn. March 1, 2022; 251 (3): 498-512.


Mcrs1 interacts with Six1 to influence early craniofacial and otic development., Neilson KM., Dev Biol. November 1, 2020; 467 (1-2): 39-50.                  


The neural border: Induction, specification and maturation of the territory that generates neural crest cells., Pla P., Dev Biol. December 1, 2018; 444 Suppl 1 S36-S46.    


Fam46a regulates BMP-dependent pre-placodal ectoderm differentiation in Xenopus., Watanabe T., Development. October 26, 2018; 145 (20):                                     


A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis., Maharana SK., BMC Biol. July 16, 2018; 16 (1): 79.                            


Znf703, a novel target of Pax3 and Zic1, regulates hindbrain and neural crest development in Xenopus., Hong CS., Genesis. December 1, 2017; 55 (12):                               


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL., PLoS Biol. October 19, 2017; 15 (10): e2004045.                                              


Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates., Marchak A., Dev Biol. September 1, 2017; 429 (1): 213-224.                    


Digital dissection of the model organism Xenopus laevis using contrast-enhanced computed tomography., Porro LB., J Anat. August 1, 2017; 231 (2): 169-191.                        


Apolipoprotein C-I mediates Wnt/Ctnnb1 signaling during neural border formation and is required for neural crest development., Yokota C., Int J Dev Biol. January 1, 2017; 61 (6-7): 415-425.                      


The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling., Wang C., J Biol Chem. September 4, 2015; 290 (36): 21925-38.                  


Xenopus Nkx6.3 is a neural plate border specifier required for neural crest development., Zhang Z., PLoS One. December 15, 2014; 9 (12): e115165.            


Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm., Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.                              


The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning., Schlosser G., Dev Biol. May 1, 2014; 389 (1): 98-119.            


Early embryonic specification of vertebrate cranial placodes., Schlosser G., Wiley Interdiscip Rev Dev Biol. January 1, 2014; 3 (5): 349-63.


Current perspectives of the signaling pathways directing neural crest induction., Stuhlmiller TJ., Cell Mol Life Sci. November 1, 2012; 69 (22): 3715-37.          


Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm., Pieper M., Development. March 1, 2012; 139 (6): 1175-87.                    


Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo., Lim JW., Development. January 1, 2011; 138 (1): 33-44.                    


Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone., Gee ST., PLoS One. January 1, 2011; 6 (6): e20309.                  


B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo., Okuda Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.                


The F-box protein Cdc4/Fbxw7 is a novel regulator of neural crest development in Xenopus laevis., Almeida AD., Neural Dev. January 4, 2010; 5 1.                              


A microarray screen for direct targets of Zic1 identifies an aquaporin gene, aqp-3b, expressed in the neural folds., Cornish EJ., Dev Dyn. May 1, 2009; 238 (5): 1179-94.                


The activity of Pax3 and Zic1 regulates three distinct cell fates at the neural plate border., Hong CS., Mol Biol Cell. June 1, 2007; 18 (6): 2192-202.                


Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa., Vernon AE., Development. September 1, 2006; 133 (17): 3359-70.                


Dystroglycan is required for proper retinal layering., Lunardi A., Dev Biol. February 15, 2006; 290 (2): 411-20.            


Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition., Delaune E., Development. January 1, 2005; 132 (2): 299-310.                    


N-cadherin transcripts in Xenopus laevis from early tailbud to tadpole., Simonneau L., Dev Dyn. August 1, 1992; 194 (4): 247-60.                

???pagination.result.page??? 1