Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (624) Expression Attributions Wiki
XB-ANAT-1585

Papers associated with non-neural ectoderm (and foxi1)

Limit to papers also referencing gene:
Show all non-neural ectoderm papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

A single-cell, time-resolved profiling of Xenopus mucociliary epithelium reveals nonhierarchical model of development., Lee J., Sci Adv. April 7, 2023; 9 (14): eadd5745.                                                          


Signaling Control of Mucociliary Epithelia: Stem Cells, Cell Fates, and the Plasticity of Cell Identity in Development and Disease., Walentek P., Cells Tissues Organs. January 1, 2022; 211 (6): 736-753.


Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia., Walentek P., Genesis. February 1, 2021; 59 (1-2): e23406.          


ΔN-Tp63 Mediates Wnt/β-Catenin-Induced Inhibition of Differentiation in Basal Stem Cells of Mucociliary Epithelia., Haas M., Cell Rep. September 24, 2019; 28 (13): 3338-3352.e6.                              


A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis., Maharana SK., BMC Biol. July 16, 2018; 16 (1): 79.                            


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL., PLoS Biol. October 19, 2017; 15 (10): e2004045.                                              


Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates., Marchak A., Dev Biol. September 1, 2017; 429 (1): 213-224.                    


The role of nitric oxide during embryonic epidermis development of Xenopus laevis., Tomankova S., Biol Open. June 15, 2017; 6 (6): 862-871.                        


Expression pattern of bcar3, a downstream target of Gata2, and its binding partner, bcar1, during Xenopus development., Green YS., Gene Expr Patterns. January 1, 2016; 20 (1): 55-62.                  


Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning., Gao Y., Dev Dyn. October 1, 2015; 244 (10): 1328-46.                                    


BMP signalling controls the construction of vertebrate mucociliary epithelia., Cibois M., Development. July 1, 2015; 142 (13): 2352-63.                        


Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm., Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.                              


Setting appropriate boundaries: fate, patterning and competence at the neural plate border., Groves AK., Dev Biol. May 1, 2014; 389 (1): 2-12.    


A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis., Dubaissi E., Development. April 1, 2014; 141 (7): 1514-25.                                


Early embryonic specification of vertebrate cranial placodes., Schlosser G., Wiley Interdiscip Rev Dev Biol. January 1, 2014; 3 (5): 349-63.


Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein., Hulstrand AM., Dev Biol. October 15, 2013; 382 (2): 385-99.                              


Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus., Lim CY., Development. February 1, 2013; 140 (4): 853-60.                                              


Understanding ciliated epithelia: the power of Xenopus., Werner ME., Genesis. March 1, 2012; 50 (3): 176-85.        


Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease., Dubaissi E., Dis Model Mech. March 1, 2011; 4 (2): 179-92.                        


Specification of ion transport cells in the Xenopus larval skin., Quigley IK., Development. February 1, 2011; 138 (4): 705-14.                                          


Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo., Lim JW., Development. January 1, 2011; 138 (1): 33-44.                    


B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo., Okuda Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.                

???pagination.result.page??? 1