Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (30) Expression Attributions Wiki
XB-ANAT-1593

Papers associated with amacrine cell

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy., Van de Sompele S., Am J Hum Genet. November 3, 2022; 109 (11): 2029-2048.                                    


Prdm13 forms a feedback loop with Ptf1a and is required for glycinergic amacrine cell genesis in the Xenopus Retina., Bessodes N., Neural Dev. September 1, 2017; 12 (1): 16.                


Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells., Miraucourt LS., Elife. August 8, 2016; 5                     


Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms., Mundell NA., J Comp Neurol. August 1, 2015; 523 (11): 1639-63.                      


Islet-1 immunoreactivity in the developing retina of Xenopus laevis., Álvarez-Hernán G., ScientificWorldJournal. November 11, 2013; 2013 740420.              


sox4 and sox11 function during Xenopus laevis eye development., Cizelsky W., PLoS One. July 1, 2013; 8 (7): e69372.              


Melatonin receptors are anatomically organized to modulate transmission specifically to cone pathways in the retina of Xenopus laevis., Wiechmann AF., J Comp Neurol. April 15, 2012; 520 (6): 1115-27.                  


GABA expression and regulation by sensory experience in the developing visual system., Miraucourt LS., PLoS One. January 1, 2012; 7 (1): e29086.            


Sumoylation controls retinal progenitor proliferation by repressing cell cycle exit in Xenopus laevis., Terada K., Dev Biol. November 1, 2010; 347 (1): 180-94.                                                  


Generation of functional eyes from pluripotent cells., Viczian AS., PLoS Biol. August 1, 2009; 7 (8): e1000174.                                


The role of Xenopus Rx-L in photoreceptor cell determination., Wu HY., Dev Biol. March 15, 2009; 327 (2): 352-65.            


Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development., Lin AC., Neural Dev. March 2, 2009; 4 8.              


Alterations of rx1 and pax6 expression levels at neural plate stages differentially affect the production of retinal cell types and maintenance of retinal stem cell qualities., Zaghloul NA., Dev Biol. June 1, 2007; 306 (1): 222-40.                      


Ptf1a triggers GABAergic neuronal cell fates in the retina., Dullin JP., BMC Dev Biol. May 31, 2007; 7 110.              


Changes in Rx1 and Pax6 activity at eye field stages differentially alter the production of amacrine neurotransmitter subtypes in Xenopus., Zaghloul NA., Mol Vis. January 26, 2007; 13 86-95.        


Zac1 promotes a Müller glial cell fate and interferes with retinal ganglion cell differentiation in Xenopus retina., Ma L., Dev Dyn. January 1, 2007; 236 (1): 192-202.          


Localization of Mel1b melatonin receptor-like immunoreactivity in ocular tissues of Xenopus laevis., Wiechmann AF., Exp Eye Res. October 1, 2004; 79 (4): 585-94.                  


Localization of choline acetyltransferase in the developing and adult retina of Xenopus laevis., López JM., Neurosci Lett. September 13, 2002; 330 (1): 61-4.


Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands., Mann F., Neuron. August 1, 2002; 35 (3): 461-73.  


Amacrine cells of the anuran retina: morphology, chemical neuroanatomy, and physiology., Vígh J., Microsc Res Tech. September 1, 2000; 50 (5): 373-83.


Calretinin is present in serotonin- and gamma-aminobutyric acid-positive amacrine cell populations in the retina of Xenopus laevis., Gábriel R., Neurosci Lett. May 5, 2000; 285 (1): 9-12.


Intrinsic bias and lineage restriction in the phenotype determination of dopamine and neuropeptide Y amacrine cells., Moody SA., J Neurosci. May 1, 2000; 20 (9): 3244-53.                


Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis., Brown NL., Development. December 1, 1998; 125 (23): 4821-33.    


Dual expression of GABA or serotonin and dopamine in Xenopus amacrine cells is transient and may be regulated by laminar cues., Huang S., Vis Neurosci. January 1, 1998; 15 (5): 969-77.


Synaptic contacts of serotonin-like immunoreactive and 5,7-dihydroxytryptamine-accumulating neurons in the anuran retina., Gábriel R., Neuroscience. June 1, 1993; 54 (4): 1103-14.


Serotonin synthesis and accumulation by neurons of the anuran retina., Zhu B., Vis Neurosci. January 1, 1992; 9 (3-4): 377-88.


Serotonin-like immunoreactivity in the retina of the clawed frog Xenopus laevis., Schütte M., J Neurocytol. August 1, 1990; 19 (4): 504-18.


Serotoninergic neurons in the retina of Xenopus laevis: selective staining, identification, development, and content., Frederick JM., J Comp Neurol. March 22, 1989; 281 (4): 516-31.


A marker of early amacrine cell development in rat retina., Barnstable CJ., Dev Biol. June 1, 1985; 352 (2): 286-90.


The emergence, localization and maturation of neurotransmitter systems during development of the retina in Xenopus laevis. I. Gamma aminobutyric acid., Hollyfield JG., J Comp Neurol. December 15, 1979; 188 (4): 587-98.

???pagination.result.page??? 1