Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1850) Expression Attributions Wiki
XB-ANAT-16

Papers associated with hindbrain (and tubb2b)

Limit to papers also referencing gene:
Show all hindbrain papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Development of a heat-stable alkaline phosphatase reporter system for cis-regulatory analysis and its application to 3D digital imaging of Xenopus embryonic tissues., Sakagami K., Dev Growth Differ. April 1, 2024; 66 (3): 256-265.        


Prdm15 acts upstream of Wnt4 signaling in anterior neural development of Xenopus laevis., Saumweber E., Front Cell Dev Biol. January 1, 2024; 12 1316048.                            


Short- and Long-Term Effects of Chlorpyrifos on Thyroid Hormone Axis and Brain Development in Xenopus laevis., Spirhanzlova P., Neuroendocrinology. January 1, 2023; 113 (12): 1298-1311.


Biallelic variants in COPB1 cause a novel, severe intellectual disability syndrome with cataracts and variable microcephaly., Macken WL., Genome Med. February 25, 2021; 13 (1): 34.            


Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons., Belrose JL., BMC Genomics. August 5, 2020; 21 (1): 540.                  


Interplay of TRIM2 E3 Ubiquitin Ligase and ALIX/ESCRT Complex: Control of Developmental Plasticity During Early Neurogenesis., Lokapally A., Cells. July 20, 2020; 9 (7):                                           


The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos., Willsey HR., Development. June 22, 2020; 147 (21):                             


Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway., Solini GE., Dev Biol. April 15, 2020; 460 (2): 99-107.        


Evolution of the Rho guanine nucleotide exchange factors Kalirin and Trio and their gene expression in Xenopus development., Kratzer MC., Gene Expr Patterns. June 1, 2019; 32 18-27.                              


The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis., Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.                      


Coordinated regulation of the dorsal-ventral and anterior-posterior patterning of Xenopus embryos by the BTB/POZ zinc finger protein Zbtb14., Takebayashi-Suzuki K., Dev Growth Differ. April 1, 2018; 60 (3): 158-173.          


Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo., Gouignard N., PLoS One. January 18, 2018; 13 (1): e0191751.                                                          


Vestigial-like 3 is a novel Ets1 interacting partner and regulates trigeminal nerve formation and cranial neural crest migration., Simon E., Biol Open. October 15, 2017; 6 (10): 1528-1540.                                  


Nodal/Activin Pathway is a Conserved Neural Induction Signal in Chordates., Le Petillon Y., Nat Ecol Evol. August 1, 2017; 1 (8): 1192-1200.                                


sall1 and sall4 repress pou5f3 family expression to allow neural patterning, differentiation, and morphogenesis in Xenopus laevis., Exner CRT., Dev Biol. May 1, 2017; 425 (1): 33-43.                                    


Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos., Fini JB., Sci Rep. March 7, 2017; 7 43786.        


FoxD1 protein interacts with Wnt and BMP signaling to differentially pattern mesoderm and neural tissue., Polevoy H., Int J Dev Biol. January 1, 2017; 61 (3-4-5): 293-302.              


Assessing Primary Neurogenesis in Xenopus Embryos Using Immunostaining., Zhang S., J Vis Exp. April 12, 2016; (110): e53949.          


CDC174, a novel component of the exon junction complex whose mutation underlies a syndrome of hypotonia and psychomotor developmental delay., Volodarsky M., Hum Mol Genet. November 15, 2015; 24 (22): 6485-91.


Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus., Thélie A., Development. October 1, 2015; 142 (19): 3416-28.                                    


Microtubule-associated protein tau promotes neuronal class II β-tubulin microtubule formation and axon elongation in embryonic Xenopus laevis., Liu Y., Eur J Neurosci. May 1, 2015; 41 (10): 1263-75.            


Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation., Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.                                  


The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation., Acosta H., Development. March 15, 2015; 142 (6): 1146-58.                                    


The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling., Iwasaki Y., Development. October 1, 2014; 141 (19): 3740-51.                                          


The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube., Hanotel J., Dev Biol. February 15, 2014; 386 (2): 340-57.                                                                    


FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos., Murgan S., PLoS One. January 1, 2014; 9 (10): e110559.                              


Maturin is a novel protein required for differentiation during primary neurogenesis., Martinez-De Luna RI., Dev Biol. December 1, 2013; 384 (1): 26-40.                        


NumbL is essential for Xenopus primary neurogenesis., Nieber F., BMC Dev Biol. October 14, 2013; 13 36.                          


ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis., Janesick A., Development. August 1, 2013; 140 (15): 3095-106.                                                              


The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling., Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.                            


Involvement of XZFP36L1, an RNA-binding protein, in Xenopus neural development., Xia YJ., Dongwuxue Yanjiu. December 1, 2012; 33 (E5-6): E82-8.                


Xaml1/Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus., Park BY., Dev Biol. February 1, 2012; 362 (1): 65-75.                


Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells., Evans AL., PLoS One. January 1, 2012; 7 (3): e33346.              


pTransgenesis: a cross-species, modular transgenesis resource., Love NR., Development. December 1, 2011; 138 (24): 5451-8.              


The homeobox leucine zipper gene Homez plays a role in Xenopus laevis neurogenesis., Ghimouz R., Biochem Biophys Res Commun. November 11, 2011; 415 (1): 11-6.            


Over-expression of atf4 in Xenopus embryos interferes with neurogenesis and eye formation., Liu JT., Dongwuxue Yanjiu. October 1, 2011; 32 (5): 485-91.            


Xenopus Dbx2 is involved in primary neurogenesis and early neural plate patterning., Ma P., Biochem Biophys Res Commun. August 19, 2011; 412 (1): 170-4.            


Proliferation, migration and differentiation in juvenile and adult Xenopus laevis brains., D'Amico LA., Dev Biol. August 8, 2011; 1405 31-48.            


Focal adhesion kinase protein regulates Wnt3a gene expression to control cell fate specification in the developing neural plate., Fonar Y., Mol Biol Cell. July 1, 2011; 22 (13): 2409-21.                  


hnRNP K post-transcriptionally co-regulates multiple cytoskeletal genes needed for axonogenesis., Liu Y., Development. July 1, 2011; 138 (14): 3079-90.                


MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis., Bonev B., Dev Cell. January 18, 2011; 20 (1): 19-32.              


In vitro organogenesis from undifferentiated cells in Xenopus., Asashima M., Dev Dyn. June 1, 2009; 238 (6): 1309-20.                      


The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx., Rodríguez-Seguel E., Dev Biol. May 15, 2009; 329 (2): 258-68.                


Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis., Illes JC., Dev Dyn. January 1, 2009; 238 (1): 194-203.                                


A crucial role for hnRNP K in axon development in Xenopus laevis., Liu Y., Development. September 1, 2008; 135 (18): 3125-35.                


Ptf1a triggers GABAergic neuronal cell fates in the retina., Dullin JP., BMC Dev Biol. May 31, 2007; 7 110.              


Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning., Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.                            


FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus., Fletcher RB., Development. May 1, 2006; 133 (9): 1703-14.            


Mxi1 is essential for neurogenesis in Xenopus and acts by bridging the pan-neural and proneural genes., Klisch TJ., Dev Biol. April 15, 2006; 292 (2): 470-85.                


Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus., Kuroda H., PLoS Biol. May 1, 2004; 2 (5): E92.                

???pagination.result.page??? 1 2 ???pagination.result.next???