Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (46) Expression Attributions Wiki
XB-ANAT-1626

Papers associated with presumptive ectoderm

Limit to papers also referencing gene:
Results 1 - 46 of 46 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

In vitro models of cranial neural crest development toward toxicity tests: frog, mouse, and human., Suga M., Oral Dis. July 1, 2017; 23 (5): 559-565.


The E3 ubiquitin ligase Hace1 is required for early embryonic development in Xenopus laevis., Iimura A., BMC Dev Biol. September 21, 2016; 16 (1): 31.                    


Three calcium-sensitive genes, fus, brd3 and wdr5, are highly expressed in neural and renal territories during amphibian development., Bibonne A., Biochim Biophys Acta. July 1, 2013; 1833 (7): 1665-71.                            


Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis., Colas AR., Genes Dev. December 1, 2012; 26 (23): 2567-79.      


The RNA-binding protein XSeb4R regulates maternal Sox3 at the posttranscriptional level during maternal-zygotic transition in Xenopus., Bentaya S., Dev Biol. March 15, 2012; 363 (2): 362-72.                      


Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway., Takahashi C., Int J Dev Biol. January 1, 2012; 56 (5): 393-402.                  


xCITED2 Induces Neural Genes in Animal Cap Explants of Xenopus Embryos., Yoon J., Exp Neurobiol. September 1, 2011; 20 (3): 123-9.        


Xrel3/XrelA attenuates β-catenin-mediated transcription during mesoderm formation in Xenopus embryos., Kennedy MW., Biochem J. April 1, 2011; 435 (1): 247-57.


Mouse prickle1, the homolog of a PCP gene, is essential for epiblast apical-basal polarity., Tao H., Proc Natl Acad Sci U S A. August 25, 2009; 106 (34): 14426-31.      


Ectodermal factor restricts mesoderm differentiation by inhibiting p53., Sasai N., Cell. May 30, 2008; 133 (5): 878-90.                        


Blood cell and vessel formation following transplantation of activin-treated explants in Xenopus., Nagamine K., Biol Pharm Bull. October 1, 2007; 30 (10): 1856-9.


A role for GATA factors in Xenopus gastrulation movements., Fletcher G., Mech Dev. October 1, 2006; 123 (10): 730-45.    


Unique players in the BMP pathway: small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling., Knockaert M., Proc Natl Acad Sci U S A. August 8, 2006; 103 (32): 11940-5.


Development of the primary mouth in Xenopus laevis., Dickinson AJ., Dev Biol. July 15, 2006; 295 (2): 700-13.                


Xenopus ADAMTS1 negatively modulates FGF signaling independent of its metalloprotease activity., Suga A., Dev Biol. July 1, 2006; 295 (1): 26-39.    


Determination of the minimal domains of Mix.3/Mixer required for endoderm development., Doherty JR., Mech Dev. January 1, 2006; 123 (1): 56-66.                  


Induction of cells expressing vascular endothelium markers from undifferentiated Xenopus presumptive ectoderm by co-treatment with activin and angiopoietin-2., Nagamine K., Zoolog Sci. July 1, 2005; 22 (7): 755-61.


Xema, a foxi-class gene expressed in the gastrula stage Xenopus ectoderm, is required for the suppression of mesendoderm., Suri C., Development. June 1, 2005; 132 (12): 2733-42.  


GATA4, 5 and 6 mediate TGFbeta maintenance of endodermal gene expression in Xenopus embryos., Afouda BA., Development. February 1, 2005; 132 (4): 763-74.          


Induction of tooth and eye by transplantation of activin A-treated, undifferentiated presumptive ectodermal Xenopus cells into the abdomen., Myoishi Y., Int J Dev Biol. December 1, 2004; 48 (10): 1105-12.


Long-term culture of Xenopus presumptive ectoderm in a nutrient-supplemented culture medium., Fukui Y., Dev Growth Differ. October 1, 2003; 45 (5-6): 499-506.        


The fungicide benomyl inhibits differentiation of neural tissue in the Xenopus embryo and animal cap explants., Yoon CS., Environ Toxicol. October 1, 2003; 18 (5): 327-37.


Xenopus nucleosome assembly protein becomes tissue-restricted during development and can alter the expression of specific genes., Steer WM., Mech Dev. September 1, 2003; 120 (9): 1045-57.                  


Screening for novel pancreatic genes from in vitro-induced pancreas in Xenopus., Sogame A., Dev Growth Differ. April 1, 2003; 45 (2): 143-52.                  


Activin A induces craniofacial cartilage from undifferentiated Xenopus ectoderm in vitro., Furue M., Proc Natl Acad Sci U S A. November 26, 2002; 99 (24): 15474-9.    


cDNA cloning, sequence comparison, and developmental expression of Xenopus rac1., Lucas JM., Mech Dev. July 1, 2002; 115 (1-2): 113-6.          


In vitro pancreas formation from Xenopus ectoderm treated with activin and retinoic acid., Moriya N., Dev Growth Differ. December 1, 2000; 42 (6): 593-602.


A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis., Angerer LM., Development. March 1, 2000; 127 (5): 1105-14.


Endoderm differentiation and inductive effect of activin-treated ectoderm in Xenopus., Ninomiya H., Dev Growth Differ. August 1, 1999; 41 (4): 391-400.


Differential nuclear localization of ER1 protein during embryonic development in Xenopus laevis., Luchman HA., Mech Dev. January 1, 1999; 80 (1): 111-4.          


A constitutively activated mutant of galphaq down-regulates EP-cadherin expression and decreases adhesion between ectodermal cells at gastrulation., Rizzoti K., Mech Dev. August 1, 1998; 76 (1-2): 19-31.                


GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo., Emily-Fenouil F., Development. July 1, 1998; 125 (13): 2489-98.


Expression cloning of a Xenopus T-related gene (Xombi) involved in mesodermal patterning and blastopore lip formation., Lustig KD., Development. December 1, 1996; 122 (12): 4001-12.                  


Overexpression of Xgsk-3 disrupts anterior ectodermal patterning in Xenopus., Pierce SB., Dev Biol. May 1, 1996; 175 (2): 256-64.          


Control of the embryonic body plan by activin during amphibian development., Ariizumi T., Zoolog Sci. October 1, 1995; 12 (5): 509-21.


Mesoderm formation in response to Brachyury requires FGF signalling., Schulte-Merker S., Curr Biol. January 1, 1995; 5 (1): 62-7.


Identification of a heparin-binding, mesoderm-inducing peptide in the swim-bladder of the red seabream, Pagrus major: a probable fish fibroblast growth factor., Suzuki T., Fish Physiol Biochem. October 1, 1994; 13 (4): 343-52.


The RSRF/MEF2 protein SL1 regulates cardiac muscle-specific transcription of a myosin light-chain gene in Xenopus embryos., Chambers AE., Genes Dev. June 1, 1994; 8 (11): 1324-34.              


Mesoderm formation in Xenopus ectodermal explants overexpressing Xwnt8: evidence for a cooperating signal reaching the animal pole by gastrulation., Sokol SY., Development. August 1, 1993; 118 (4): 1335-42.


A carboxyl-terminal truncated version of the activin receptor mediates activin signals in early Xenopus embryos., Nishimatsu S., FEBS Lett. November 9, 1992; 312 (2-3): 169-73.


Xenopus blastulae show regional differences in competence for mesoderm induction: correlation with endogenous basic fibroblast growth factor levels., Godsave SF., Dev Biol. June 1, 1992; 151 (2): 506-15.        


Mesoderm-inducing factors and the control of gastrulation., Smith JC., Dev Suppl. January 1, 1992; 127-36.


Dose and time-dependent mesoderm induction and outgrowth formation by activin A in Xenopus laevis., Ariizumi T., Int J Dev Biol. December 1, 1991; 35 (4): 407-14.


Expression of N-CAM precedes neural induction in Pleurodeles waltl (urodele, amphibian)., Saint-Jeannet JP., Development. August 1, 1989; 106 (4): 675-83.


Mix.1, a homeobox mRNA inducible by mesoderm inducers, is expressed mostly in the presumptive endodermal cells of Xenopus embryos., Rosa FM., Cell. June 16, 1989; 57 (6): 965-74.


The organization of mesodermal pattern in Xenopus laevis: experiments using a Xenopus mesoderm-inducing factor., Cooke J., Development. December 1, 1987; 101 (4): 893-908.            

Page(s): 1