Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (314) Expression Attributions Wiki
XB-ANAT-168

Papers associated with cartilage tissue (and sox9)

Limit to papers also referencing gene:
Show all cartilage tissue papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Common features of cartilage maturation are not conserved in an amphibian model., Nguyen JKB., Dev Dyn. November 1, 2023; 252 (11): 1375-1390.                


Adverse Effect of Metallic Gold and Silver Nanoparticles on Xenopus laevis Embryogenesis., Carotenuto R., Nanomaterials (Basel). September 4, 2023; 13 (17):                   


E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells., Kennedy AE., PLoS One. September 8, 2017; 12 (9): e0185729.                      


WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis., Nalesso G., Ann Rheum Dis. January 1, 2017; 76 (1): 218-226.              


Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome., Devotta A., Dev Biol. July 15, 2016; 415 (2): 371-382.                      


Xenopus Limb bud morphogenesis., Keenan SR., Dev Dyn. March 1, 2016; 245 (3): 233-43.            


Functional joint regeneration is achieved using reintegration mechanism in Xenopus laevis., Tsutsumi R., Regeneration (Oxf). February 1, 2016; 3 (1): 26-38.                    


Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration., Wang YH., Mech Dev. November 1, 2015; 138 Pt 3 256-67.                


Evidence for an amphibian sixth digit., Hayashi S., Zoological Lett. June 15, 2015; 1 17.                  


The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus., Griffin JN., PLoS Genet. March 10, 2015; 11 (3): e1005018.                              


Snail2/Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development., Tien CL., Development. February 15, 2015; 142 (4): 722-31.                


A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements., Square T., Dev Biol. January 15, 2015; 397 (2): 293-304.                                            


A Molecular atlas of Xenopus respiratory system development., Rankin SA, Rankin SA., Dev Dyn. January 1, 2015; 244 (1): 69-85.                    


Temporal and spatial expression analysis of peripheral myelin protein 22 (Pmp22) in developing Xenopus., Tae HJ., Gene Expr Patterns. January 1, 2015; 17 (1): 26-30.              


The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling., Jacox L., Cell Rep. July 24, 2014; 8 (2): 596-609.                            


Role of Sp5 as an essential early regulator of neural crest specification in xenopus., Park DS., Dev Dyn. December 1, 2013; 242 (12): 1382-94.                


Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos., Milet C., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.                      


The protein kinase MLTK regulates chondrogenesis by inducing the transcription factor Sox6., Suzuki T., Development. August 1, 2012; 139 (16): 2988-98.                        


Induction of the neural crest state: control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions., Prasad MS., Dev Biol. June 1, 2012; 366 (1): 10-21.


Mustn1 is essential for craniofacial chondrogenesis during Xenopus development., Gersch RP., Gene Expr Patterns. January 1, 2012; 12 (3-4): 145-53.                


V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis., Vandenberg LN., Dev Dyn. August 1, 2011; 240 (8): 1889-904.                        


WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways., Nalesso G., J Cell Biol. May 2, 2011; 193 (3): 551-64.              


SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos., Wu MY., PLoS Biol. February 15, 2011; 9 (2): e1000593.                              


Activity of the RhoU/Wrch1 GTPase is critical for cranial neural crest cell migration., Fort P., Dev Biol. February 15, 2011; 350 (2): 451-63.                      


A role for FoxN3 in the development of cranial cartilages and muscles in Xenopus laevis (Amphibia: Anura: Pipidae) with special emphasis on the novel rostral cartilages., Schmidt J., J Anat. February 1, 2011; 218 (2): 226-42.


Paraxial T-box genes, Tbx6 and Tbx1, are required for cranial chondrogenesis and myogenesis., Tazumi S., Dev Biol. October 15, 2010; 346 (2): 170-80.                                


Serotonin 2B receptor signaling is required for craniofacial morphogenesis and jaw joint formation in Xenopus., Reisoli E., Development. September 1, 2010; 137 (17): 2927-37.                            


ADAM13 induces cranial neural crest by cleaving class B Ephrins and regulating Wnt signaling., Wei S., Dev Cell. August 17, 2010; 19 (2): 345-52.        


Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest., Betancur P., Proc Natl Acad Sci U S A. February 23, 2010; 107 (8): 3570-5.  


CHD7 cooperates with PBAF to control multipotent neural crest formation., Bajpai R., Nature. February 18, 2010; 463 (7283): 958-62.      


Analysis of hoxa11 and hoxa13 expression during patternless limb regeneration in Xenopus., Ohgo S., Dev Biol. February 15, 2010; 338 (2): 148-57.          


Regulatory elements of Xenopus col2a1 drive cartilaginous gene expression in transgenic frogs., Kerney R., Int J Dev Biol. January 1, 2010; 54 (1): 141-50.      


Involvement of Neptune in induction of the hatching gland and neural crest in the Xenopus embryo., Kurauchi T., Differentiation. January 1, 2010; 79 (4-5): 251-9.                


Early cranial patterning in the direct-developing frog Eleutherodactylus coqui revealed through gene expression., Kerney R., Evol Dev. January 1, 2010; 12 (4): 373-82.


Myosin-X is required for cranial neural crest cell migration in Xenopus laevis., Hwang YS., Dev Dyn. October 1, 2009; 238 (10): 2522-9.      


Effects of activation of hedgehog signaling on patterning, growth, and differentiation in Xenopus froglet limb regeneration., Yakushiji N., Dev Dyn. August 1, 2009; 238 (8): 1887-96.          


Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives., Rogers CD., Mech Dev. January 1, 2009; 126 (1-2): 42-55.        


Skeletogenesis in Xenopus tropicalis: characteristic bone development in an anuran amphibian., Miura S., Bone. November 1, 2008; 43 (5): 901-9.


A new role for the Endothelin-1/Endothelin-A receptor signaling during early neural crest specification., Bonano M., Dev Biol. November 1, 2008; 323 (1): 114-29.                          


Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways., Zhao H., Development. April 1, 2008; 135 (7): 1283-93.                            


Gene expression reveals unique skeletal patterning in the limb of the direct-developing frog, Eleutherodactylus coqui., Kerney R., Evol Dev. January 1, 2008; 10 (4): 439-48.


Runx2 is essential for larval hyobranchial cartilage formation in Xenopus laevis., Kerney R., Dev Dyn. June 1, 2007; 236 (6): 1650-62.                  


Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development., Luo T., Development. April 1, 2007; 134 (7): 1279-89.      


Characterization of Xenopus digits and regenerated limbs of the froglet., Satoh A., Dev Dyn. December 1, 2006; 235 (12): 3316-26.              


Differential regulation of avian pelvic girdle development by the limb field ectoderm., Malashichev Y., Anat Embryol (Berl). October 1, 2005; 210 (3): 187-97.


Joint development in Xenopus laevis and induction of segmentations in regenerating froglet limb (spike)., Satoh A., Dev Dyn. August 1, 2005; 233 (4): 1444-53.              


Muscle formation in regenerating Xenopus froglet limb., Satoh A., Dev Dyn. June 1, 2005; 233 (2): 337-46.        


To proliferate or to die: role of Id3 in cell cycle progression and survival of neural crest progenitors., Kee Y., Genes Dev. March 15, 2005; 19 (6): 744-55.            


Induction of the neural crest and the opportunities of life on the edge., Huang X., Dev Biol. November 1, 2004; 275 (1): 1-11.


Noggin inhibits chondrogenic but not osteogenic differentiation in mesodermal stem cell line C1 and skeletal cells., Nifuji A., Endocrinology. July 1, 2004; 145 (7): 3434-42.

???pagination.result.page??? 1 2 ???pagination.result.next???