Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (303) Expression Attributions Wiki
XB-ANAT-168

Papers associated with cartilage tissue

Limit to papers also referencing gene:
Results 1 - 50 of 303 results

Page(s): 1 2 3 4 5 6 7 Next

Sort Newest To Oldest Sort Oldest To Newest

How thyroid hormones and their inhibitors affect cartilage growth and shape in the frog Xenopus laevis., Rose CS., J Anat. January 1, 2019; 234 (1): 89-105.


Comparative analysis of p4ha1 and p4ha2 expression during Xenopus laevis development., Martini D., Int J Dev Biol. January 1, 2019; 63 (6-7): 311-316.          


HIF-1α metabolically controls collagen synthesis and modification in chondrocytes., Stegen S., Nature. January 1, 2019; 565 (7740): 511-515.


Bapx1 upregulation is associated with ectopic mandibular cartilage development in amphibians., Lukas P., Zoological Lett. January 1, 2018; 4 16.                


Nosip functions during vertebrate eye and cranial cartilage development., Flach H., Dev Dyn. January 1, 2018; 247 (9): 1070-1082.                


WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis., Nalesso G., Ann Rheum Dis. January 1, 2017; 76 (1): 218-226.              


Conserved and novel functions of programmed cellular senescence during vertebrate development., Davaapil H., Development. January 1, 2017; 144 (1): 106-114.    


Transcriptional dynamics of tail regeneration in Xenopus tropicalis., Chang J., Genesis. January 1, 2017; 55 (1-2):       


Analysis of Craniocardiac Malformations in Xenopus using Optical Coherence Tomography., Deniz E., Sci Rep. January 1, 2017; 7 42506.          


E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells., Kennedy AE., PLoS One. January 1, 2017; 12 (9): e0185729.                      


Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome., Devotta A., Dev Biol. July 15, 2016; 415 (2): 371-382.                      


E-cadherin is required for cranial neural crest migration in Xenopus laevis., Huang C., Dev Biol. March 15, 2016; 411 (2): 159-171.                        


Xenopus Limb bud morphogenesis., Keenan SR., Dev Dyn. March 1, 2016; 245 (3): 233-43.            


Differential requirement of bone morphogenetic protein receptors Ia (ALK3) and Ib (ALK6) in early embryonic patterning and neural crest development., Schille C., BMC Dev Biol. January 19, 2016; 16 1.                          


Functional joint regeneration is achieved using reintegration mechanism in Xenopus laevis., Tsutsumi R., Regeneration (Oxf). January 1, 2016; 3 (1): 26-38.                    


A Tunable Silk Hydrogel Device for Studying Limb Regeneration in Adult Xenopus Laevis., Golding A., PLoS One. January 1, 2016; 11 (6): e0155618.            


Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration., Wang YH., Mech Dev. November 1, 2015; 138 Pt 3 256-67.                


The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling., Wang C., J Biol Chem. September 4, 2015; 290 (36): 21925-38.                  


The role of folate metabolism in orofacial development and clefting., Wahl SE., Dev Biol. September 1, 2015; 405 (1): 108-22.                                  


Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae., Taniguchi Y., Sci Rep. June 18, 2015; 5 11428.                


Deconstructing cartilage shape and size into contributions from embryogenesis, metamorphosis, and tadpole and frog growth., Rose CS., J Anat. June 1, 2015; 226 (6): 575-95.


Formation of a new limb bud at the boundary between a transplanted limb bud and the tail surface of Xenopus tadpoles., Adaniya C., Zoolog Sci. June 1, 2015; 32 (3): 223-32.


Mef2c-F10N enhancer driven β-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells., Aoto K., Dev Biol. June 1, 2015; 402 (1): 3-16.


The Wnt receptor Frizzled-4 modulates ADAM13 metalloprotease activity., Abbruzzese G., J Cell Sci. March 15, 2015; 128 (6): 1139-49.


The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus., Griffin JN., PLoS Genet. March 1, 2015; 11 (3): e1005018.                              


Snail2/Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development., Tien CL., Development. February 15, 2015; 142 (4): 722-31.                


A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements., Square T., Dev Biol. January 15, 2015; 397 (2): 293-304.                                            


A Molecular atlas of Xenopus respiratory system development., Rankin SA, Rankin SA., Dev Dyn. January 1, 2015; 244 (1): 69-85.                    


Temporal and spatial expression analysis of peripheral myelin protein 22 (Pmp22) in developing Xenopus., Tae HJ., Gene Expr Patterns. January 1, 2015; 17 (1): 26-30.              


The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family., Kelwick R., Genome Biol. January 1, 2015; 16 (1): 113.    


Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration., Mitogawa K., PLoS One. January 1, 2015; 10 (7): e0133375.                  


Molecular footprinting of skeletal tissues in the catshark Scyliorhinus canicula and the clawed frog Xenopus tropicalis identifies conserved and derived features of vertebrate calcification., Enault S., Front Genet. January 1, 2015; 6 283.              


Evidence for an amphibian sixth digit., Hayashi S., Zoological Lett. January 1, 2015; 1 17.                  


Evolutionary innovation and conservation in the embryonic derivation of the vertebrate skull., Piekarski N., Nat Commun. December 1, 2014; 5 5661.                


5-Mehtyltetrahydrofolate rescues alcohol-induced neural crest cell migration abnormalities., Shi Y, Shi Y., Mol Brain. September 16, 2014; 7 67.        


Retinoic acid induced-1 (Rai1) regulates craniofacial and brain development in Xenopus., Tahir R., Mech Dev. August 1, 2014; 133 91-104.                            


Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl., Rao N., BMC Dev Biol. July 25, 2014; 14 32.                        


The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling., Jacox L., Cell Rep. July 24, 2014; 8 (2): 596-609.                            


Yap1, transcription regulator in the Hippo signaling pathway, is required for Xenopus limb bud regeneration., Hayashi S., Dev Biol. April 1, 2014; 388 (1): 57-67.


Dissection of Xenopus laevis neural crest for in vitro explant culture or in vivo transplantation., Milet C., J Vis Exp. March 4, 2014; (85):


Cartilage derived morphogenetic protein 2 - A potential therapy for intervertebral disc regeneration?, Williams LA., Biologicals. March 1, 2014; 42 (2): 65-73.


Vertical signalling involves transmission of Hox information from gastrula mesoderm to neurectoderm., Bardine N., PLoS One. January 1, 2014; 9 (12): e115208.          


Evolutionary origins of C-terminal (GPP)n 3-hydroxyproline formation in vertebrate tendon collagen., Hudson DM., PLoS One. January 1, 2014; 9 (4): e93467.          


Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis., Hempel A., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.                                              


Plasticity of lung development in the amphibian, Xenopus laevis., Rose CS., Biol Open. December 15, 2013; 2 (12): 1324-35.      


Role of Sp5 as an essential early regulator of neural crest specification in xenopus., Park DS., Dev Dyn. December 1, 2013; 242 (12): 1382-94.                


A conserved Oct4/POUV-dependent network links adhesion and migration to progenitor maintenance., Livigni A., Curr Biol. November 18, 2013; 23 (22): 2233-2244.                                    


GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis-associated factors., Leijten JC., Arthritis Res Ther. September 19, 2013; 15 (5): R126.            


The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling., Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.                            


Ric-8A, a guanine nucleotide exchange factor for heterotrimeric G proteins, is critical for cranial neural crest cell migration., Fuentealba J., Dev Biol. June 15, 2013; 378 (2): 74-82.          

Page(s): 1 2 3 4 5 6 7 Next

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556