Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (144) Attributions Wiki
XB-STAGE-17

Papers associated with NF stage 5 (16-cell)

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

DNA synthesis during lens regeneration in larval Xenopus laevis., Waggoner PR, Reyer RW., J Exp Zool. April 1, 1975; 192 (1): 65-71.


New membrane formation and intercellular communication in the early Xenopus embryo. II. Theoretical analysis., de Laat SW, Barts PW., J Membr Biol. June 9, 1976; 27 (1-2): 131-51.


New membrane formation and intercellular communication in the early Xenopus embryo., de Laat SW, Barts PW, Bakker MI., J Membr Biol. June 9, 1976; 27 (1-2): 109-29.


A freeze-fracture and concanavalin A-binding study of the membrane of cleaving Xenopus embryos., Sanders EJ, Dicaprio RA., Differentiation. November 2, 1976; 7 (1): 13-21.


Role of calcium ions in the control of embryogenesis of Xenopus. Changes in the subcellular distribution of calcium in early cleavage embryos after treatment with the ionophore A23187., Osborn JC, Duncan CJ, Smith JL., J Cell Biol. March 1, 1979; 80 (3): 589-604.


A mosaicism in the higher order structure of Xenopus oocyte nucleolar chromatin prior to and during ribosomal gene transcription., Pruitt SC, Grainger RM., Cell. March 1, 1981; 23 (3): 711-20.


Rohon-Beard neurons arise from a substitute ancestral cell after removal of the cell from which they normally arise in the 16-cell frog embryo., Jacobson M., J Neurosci. August 1, 1981; 1 (8): 923-7.


Rohon-Beard neuron origin from blastomeres of the 16-cell frog embryo., Jacobson M., J Neurosci. August 1, 1981; 1 (8): 918-22.


Observations on intracellular pH during cleavage of eggs of Xenopus laevis., Lee SC, Steinhardt RA., J Cell Biol. November 1, 1981; 91 (2 Pt 1): 414-19.


Steroid and peptide control mechanisms in membrane of Xenopus laevis oocytes resuming meiotic division., Baulieu EE, Schorderet-Slatkine S., Ciba Found Symp. January 1, 1983; 98 137-58.


Steroidal and peptidic control mechanisms in membrane of Xenopus laevis oocytes resuming meiotic division., Baulieu EE, Schorderet-Slatkine S., J Steroid Biochem. July 1, 1983; 19 (1A): 139-45.


Induction of germinal vesicle breakdown in Xenopus laevis oocytes: synergistic action of progesterone and insulin., Le Goascogne C, Hirai S, Baulieu EE., J Endocrinol. April 1, 1984; 101 (1): 7-12.


Testosterone-induced meiotic maturation of Xenopus laevis oocytes: evidence for an early effect in the synergistic action of insulin., Le Goascogne C, Sananès N, Gouézou M, Baulieu EE., Dev Biol. May 1, 1985; 109 (1): 9-14.


Mobilization of specific maternal RNA species into polysomes after fertilization in Xenopus laevis., Dworkin MB, Shrutkowski A, Dworkin-Rastl E., Proc Natl Acad Sci U S A. November 1, 1985; 82 (22): 7636-40.


Periodic changes in the rigidity of activated anuran eggs depend on germinal vesicle materials., Ohsumi K, Shinagawa A, Katagiri C., Dev Biol. December 1, 1986; 118 (2): 467-73.


Fates of the blastomeres of the 16-cell stage Xenopus embryo., Moody SA., Dev Biol. February 1, 1987; 119 (2): 560-78.        


Cloning of nucleoplasmin from Xenopus laevis oocytes and analysis of its developmental expression., Bürglin TR, Mattaj IW, Newmeyer DD, Zeller R, De Robertis EM., Genes Dev. March 1, 1987; 1 (1): 97-107.                


Induction of maturation in small Xenopus laevis oocytes., Taylor MA, Smith LD., Dev Biol. May 1, 1987; 121 (1): 111-8.


Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos., Klymkowsky MW, Maynell LA, Polson AG., Development. July 1, 1987; 100 (3): 543-57.              


Is a decrease in cyclic AMP a necessary and sufficient signal for maturation of amphibian oocytes?, Gelerstein S, Shapira H, Dascal N, Yekuel R, Oron Y., Dev Biol. May 1, 1988; 127 (1): 25-32.


Patterns of junctional communication during development of the early amphibian embryo., Guthrie S, Turin L, Warner A., Development. August 1, 1988; 103 (4): 769-83.


Slow intermixing of cells during Xenopus embryogenesis contributes to the consistency of the blastomere fate map., Wetts R, Fraser SE., Development. January 1, 1989; 105 (1): 9-15.


Expression of epithelial Na channels in Xenopus oocytes., Palmer LG, Corthesy-Theulaz I, Gaeggeler HP, Kraehenbuhl JP, Rossier B., J Gen Physiol. July 1, 1990; 96 (1): 23-46.


Identification of vimentin and novel vimentin-related proteins in Xenopus oocytes and early embryos., Torpey NP, Heasman J, Wylie CC., Development. December 1, 1990; 110 (4): 1185-95.            


A retinoic acid receptor expressed in the early development of Xenopus laevis., Ellinger-Ziegelbauer H, Dreyer C., Genes Dev. January 1, 1991; 5 (1): 94-104.              


Secretion of inhibin beta A by endoderm cultured from early embryonic chicken., Kokan-Moore NP, Bolender DL, Lough J., Dev Biol. July 1, 1991; 146 (1): 242-5.


Autonomous differentiation of dorsal axial structures from an animal cap cleavage stage blastomere in Xenopus., Gallagher BC, Hainski AM, Moody SA., Development. August 1, 1991; 112 (4): 1103-14.


Adrenocorticotropin receptors: functional expression from rat adrenal mRNA in Xenopus laevis oocytes., Mertz LM, Catt KJ., Proc Natl Acad Sci U S A. October 1, 1991; 88 (19): 8525-9.


Activin receptor mRNA is expressed early in Xenopus embryogenesis and the level of the expression affects the body axis formation., Kondo M, Tashiro K, Fujii G, Asano M, Miyoshi R, Yamada R, Muramatsu M, Shiokawa K., Biochem Biophys Res Commun. December 16, 1991; 181 (2): 684-90.      


Distinct distribution of vimentin and cytokeratin in Xenopus oocytes and early embryos., Torpey NP, Heasman J, Wylie CC., J Cell Sci. January 1, 1992; 101 ( Pt 1) 151-60.                


Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation., Fujisue M, Kobayakawa Y, Yamana K., Development. May 1, 1993; 118 (1): 163-70.      


Cortical cytoplasm, which induces dorsal axis formation in Xenopus, is inactivated by UV irradiation of the oocyte., Holowacz T, Elinson RP., Development. September 1, 1993; 119 (1): 277-85.          


Competence prepattern in the animal hemisphere of the 8-cell-stage Xenopus embryo., Kinoshita K, Bessho T, Asashima M., Dev Biol. November 1, 1993; 160 (1): 276-84.        


Magnetic resonance microscopy of embryonic cell lineages and movements., Jacobs RE, Fraser SE., Science. February 4, 1994; 263 (5147): 681-4.


Integrin alpha 5 during early development of Xenopus laevis., Joos TO, Whittaker CA, Meng F, DeSimone DW, Gnau V, Hausen P., Mech Dev. April 1, 1995; 50 (2-3): 187-99.                    


Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of dishevelled., Sokol SY, Klingensmith J, Perrimon N, Itoh K., Development. June 1, 1995; 121 (6): 1637-47.              


Regulation of gene expression at the beginning of mammalian development., Nothias JY, Majumder S, Kaneko KJ, DePamphilis ML., J Biol Chem. September 22, 1995; 270 (38): 22077-80.


Induction of avian cardiac myogenesis by anterior endoderm., Schultheiss TM, Xydas S, Lassar AB., Development. December 1, 1995; 121 (12): 4203-14.


Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos., Hoppler S, Brown JD, Moon RT., Genes Dev. November 1, 1996; 10 (21): 2805-17.            


XIPOU 2 is a potential regulator of Spemann's Organizer., Witta SE, Sato SM., Development. March 1, 1997; 124 (6): 1179-89.                


Characterization of the anticonvulsant properties of ganaxolone (CCD 1042; 3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20-one), a selective, high-affinity, steroid modulator of the gamma-aminobutyric acid(A) receptor., Carter RB, Wood PL, Wieland S, Hawkinson JE, Belelli D, Lambert JJ, White HS, Wolf HH, Mirsadeghi S, Tahir SH, Bolger MB, Lan NC, Gee KW., J Pharmacol Exp Ther. March 1, 1997; 280 (3): 1284-95.


Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway., Larabell CA, Torres M, Rowning BA, Yost C, Miller JR, Wu M, Kimelman D, Moon RT., J Cell Biol. March 10, 1997; 136 (5): 1123-36.                


Ets-1 and Ets-2 proto-oncogenes exhibit differential and restricted expression patterns during Xenopus laevis oogenesis and embryogenesis., Meyer D, Durliat M, Senan F, Wolff M, Andre M, Hourdry J, Remy P., Int J Dev Biol. August 1, 1997; 41 (4): 607-20.                                      


Pre-MBT patterning of early gene regulation in Xenopus: the role of the cortical rotation and mesoderm induction., Ding X, Hausen P, Steinbeisser H., Mech Dev. January 1, 1998; 70 (1-2): 15-24.            


The role of maternal VegT in establishing the primary germ layers in Xenopus embryos., Zhang J, Houston DW, King ML, Payne C, Wylie C, Heasman J., Cell. August 21, 1998; 94 (4): 515-24.                


beta-TrCP is a negative regulator of Wnt/beta-catenin signaling pathway and dorsal axis formation in Xenopus embryos., Marikawa Y, Elinson RP., Mech Dev. September 1, 1998; 77 (1): 75-80.    


Xenopus muscle-specific kinase: molecular cloning and prominent expression in neural tissues during early embryonic development., Fu AK, Smith FD, Zhou H, Chu AH, Tsim KW, Peng BH, Ip NY., Eur J Neurosci. February 1, 1999; 11 (2): 373-82.                    


Elucidating the origins of the vascular system: a fate map of the vascular endothelial and red blood cell lineages in Xenopus laevis., Mills KR, Kruep D, Saha MS., Dev Biol. May 15, 1999; 209 (2): 352-68.                


Inhibitory patterning of the anterior neural plate in Xenopus by homeodomain factors Dlx3 and Msx1., Feledy JA, Beanan MJ, Sandoval JJ, Goodrich JS, Lim JH, Matsuo-Takasaki M, Sato SM, Sargent TD., Dev Biol. August 15, 1999; 212 (2): 455-64.                


Pax6 induces ectopic eyes in a vertebrate., Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A., Development. October 1, 1999; 126 (19): 4213-22.              

???pagination.result.page??? 1 2 3 ???pagination.result.next???