Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4274) Expression Attributions Wiki
XB-ANAT-170

Papers associated with muscle (and krt12.4)

Limit to papers also referencing gene:
Show all muscle papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Epithelial-Mesenchymal Transition Promotes the Differentiation Potential of Xenopus tropicalis Immature Sertoli Cells., Nguyen TMX., Stem Cells Int. May 5, 2019; 2019 8387478.                                            


The Xenopus animal cap transcriptome: building a mucociliary epithelium., Angerilli A., Nucleic Acids Res. September 28, 2018; 46 (17): 8772-8787.                          


Histone deacetylase activity has an essential role in establishing and maintaining the vertebrate neural crest., Rao A., Development. August 8, 2018; 145 (15):                           


PV.1 induced by FGF-Xbra functions as a repressor of neurogenesis in Xenopus embryos., Yoon J., BMB Rep. December 1, 2014; 47 (12): 673-8.        


Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl., Rao N., BMC Dev Biol. July 25, 2014; 14 32.                        


An essential role for LPA signalling in telencephalon development., Geach TJ., Development. February 1, 2014; 141 (4): 940-9.                            


Tcf21 regulates the specification and maturation of proepicardial cells., Tandon P., Development. June 1, 2013; 140 (11): 2409-21.                                


Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene., Nicetto D., PLoS Genet. January 1, 2013; 9 (1): e1003188.                                                                


Pou-V factor Oct25 regulates early morphogenesis in Xenopus laevis., Julier A., Dev Growth Differ. September 1, 2012; 54 (7): 702-16.              


Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates., Seifert AW., PLoS One. January 1, 2012; 7 (4): e32875.                      


Inhibition of FGF signaling converts dorsal mesoderm to ventral mesoderm in early Xenopus embryos., Lee SY., Differentiation. September 1, 2011; 82 (2): 99-107.                    


Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone., Gee ST., PLoS One. January 1, 2011; 6 (6): e20309.                  


Involvement of Neptune in induction of the hatching gland and neural crest in the Xenopus embryo., Kurauchi T., Differentiation. January 1, 2010; 79 (4-5): 251-9.                


Xenopus BTBD6 and its Drosophila homologue lute are required for neuronal development., Bury FJ., Dev Dyn. November 1, 2008; 237 (11): 3352-60.              


BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos., Gamer LW., Dev Biol. September 1, 2005; 285 (1): 156-68.              


Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition., Delaune E., Development. January 1, 2005; 132 (2): 299-310.                    


Tsukushi functions as an organizer inducer by inhibition of BMP activity in cooperation with chordin., Ohta K., Dev Cell. September 1, 2004; 7 (3): 347-358.        


Xenopus X-box binding protein 1, a leucine zipper transcription factor, is involved in the BMP signaling pathway., Zhao H., Dev Biol. May 15, 2003; 257 (2): 278-91.          


Anteroposterior patterning in Xenopus embryos: egg fragment assay system reveals a synergy of dorsalizing and posteriorizing embryonic domains., Fujii H., Dev Biol. December 1, 2002; 252 (1): 15-30.


Distinct effects of XBF-1 in regulating the cell cycle inhibitor p27(XIC1) and imparting a neural fate., Hardcastle Z., Development. March 1, 2000; 127 (6): 1303-14.                  


Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm., Kishi M., Development. February 1, 2000; 127 (4): 791-800.              


Functional analysis of human Smad1: role of the amino-terminal domain., Xu RH., Biochem Biophys Res Commun. May 10, 1999; 258 (2): 366-73.      


derrière: a TGF-beta family member required for posterior development in Xenopus., Sun BI., Development. April 1, 1999; 126 (7): 1467-82.                    


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            


The role of maternal VegT in establishing the primary germ layers in Xenopus embryos., Zhang J., Cell. August 21, 1998; 94 (4): 515-24.                


Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation., Kroll KL., Development. August 1, 1998; 125 (16): 3247-58.                


Xenopus Zic family and its role in neural and neural crest development., Nakata K., Mech Dev. July 1, 1998; 75 (1-2): 43-51.            


Epidermal induction and inhibition of neural fate by translation initiation factor 4AIII., Weinstein DC., Development. November 1, 1997; 124 (21): 4235-42.                  


Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity., Piccolo S., Cell. October 31, 1997; 91 (3): 407-16.            


[Induction of cell differentiation and programmed cell death in amphibian metamorphosis]., Nishikawa A., Hum Cell. September 1, 1997; 10 (3): 167-74.


Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos., Coffman CR., Cell. May 21, 1993; 73 (4): 659-71.            


Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm., Green JB., Cell. November 27, 1992; 71 (5): 731-9.            


Localized expression of a Xenopus POU gene depends on cell-autonomous transcriptional activation and induction-dependent inactivation., Frank D., Development. June 1, 1992; 115 (2): 439-48.            


An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes., Rungger-Brändle E., J Cell Biol. August 1, 1989; 109 (2): 705-16.              


Cytokeratin filaments and desmosomes in the epithelioid cells of the perineurial and arachnoidal sheaths of some vertebrate species., Achtstätter T., Differentiation. May 1, 1989; 40 (2): 129-49.                        


Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin., Herrmann H., Development. February 1, 1989; 105 (2): 279-98.                      


Expression of intermediate filament proteins during development of Xenopus laevis. III. Identification of mRNAs encoding cytokeratins typical of complex epithelia., Fouquet B., Development. December 1, 1988; 104 (4): 533-48.                      


Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction., Kintner CR., Development. March 1, 1987; 99 (3): 311-25.                  


Cytokeratins in certain endothelial and smooth muscle cells of two taxonomically distant vertebrate species, Xenopus laevis and man., Jahn L., Differentiation. January 1, 1987; 36 (3): 234-54.                        


Cell interactions and the control of gene activity during early development of Xenopus laevis., Sargent TD., Dev Biol. March 1, 1986; 114 (1): 238-46.


Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis., Benavente R., Cell. May 1, 1985; 41 (1): 177-90.                      


Intermediate-size filaments in a germ cell: Expression of cytokeratins in oocytes and eggs of the frog Xenopus., Franz JK., Proc Natl Acad Sci U S A. October 1, 1983; 80 (20): 6254-8.          

???pagination.result.page??? 1