Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (31) Expression Attributions Wiki
XB-ANAT-1704

Papers associated with infundibulum

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Some aspects of the hypothalamic and pituitary development, metamorphosis, and reproductive behavior as studied in amphibians., Kikuyama S., Gen Comp Endocrinol. December 1, 2019; 284 113212.


Microvascular anatomy of the brain of the adult pipid frog, Xenopus laevis (Daudin): A scanning electron microscopic study of vascular corrosion casts., Lametschwandtner A., J Morphol. July 1, 2018; 279 (7): 950-969.                                                                                              


Netrin-1 directs dendritic growth and connectivity of vertebrate central neurons in vivo., Nagel AN., Neural Dev. June 10, 2015; 10 14.                          


Expression profile of the aromatase enzyme in the Xenopus brain and localization of estradiol and estrogen receptors in each tissue., Iwabuchi J., Gen Comp Endocrinol. December 1, 2013; 194 286-94.            


Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1., Hagenlocher C., Cilia. April 29, 2013; 2 (1): 12.                  


Exons 5-15 of kazrin are dispensable for murine epidermal morphogenesis and homeostasis., Chhatriwala MK., J Invest Dermatol. August 1, 2012; 132 (8): 1977-87.            


Pituitary melanotrope cells of Xenopus laevis are of neural ridge origin and do not require induction by the infundibulum., Eagleson GW., Gen Comp Endocrinol. August 1, 2012; 178 (1): 116-22.            


Distribution pattern of neuropeptide Y in the brain, pituitary and olfactory system during the larval development of the toad Rhinella arenarum (Amphibia: Anura)., Heer T., Anat Histol Embryol. April 1, 2009; 38 (2): 89-95.


Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis., Roubos EW., J Comp Neurol. April 1, 2008; 507 (4): 1622-38.                  


The homeodomain factor Xanf represses expression of genes in the presumptive rostral forebrain that specify more caudal brain regions., Ermakova GV., Dev Biol. July 15, 2007; 307 (2): 483-97.        


Expression of type II iodothyronine deiodinase marks the time that a tissue responds to thyroid hormone-induced metamorphosis in Xenopus laevis., Cai L., Dev Biol. February 1, 2004; 266 (1): 87-95.                


Expression of the Xenopus laevis metallothionein gene during ontogeny., Durliat M., Int J Dev Biol. September 1, 1999; 43 (6): 575-8.            


Gli1 is a target of Sonic hedgehog that induces ventral neural tube development., Lee J., Development. July 1, 1997; 124 (13): 2537-52.                  


The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development., Cohen-Cory S., Dev Biol. October 10, 1996; 179 (1): 102-15.              


Neuropeptide Y: localization in the brain and pituitary of the developing frog (Rana esculenta)., D'Aniello B., Cell Tissue Res. August 1, 1996; 285 (2): 253-9.


Immunohistochemical investigation of gamma-aminobutyric acid ontogeny and transient expression in the central nervous system of Xenopus laevis tadpoles., Barale E., J Comp Neurol. April 29, 1996; 368 (2): 285-94.


Fate of the anterior neural ridge and the morphogenesis of the Xenopus forebrain., Eagleson G., J Neurobiol. October 1, 1995; 28 (2): 146-58.


Dynamic and differential Oct-1 expression during early Xenopus embryogenesis: persistence of Oct-1 protein following down-regulation of the RNA., Veenstra GJ., Mech Dev. April 1, 1995; 50 (2-3): 103-17.                            


The TRH neuronal phenotype forms embryonic cell clusters that go on to establish a regionalized cell fate in forebrain., Hayes WP., J Neurobiol. September 1, 1994; 25 (9): 1095-112.


Expression of a Xenopus Distal-less homeobox gene involved in forebrain and cranio-facial development., Dirksen ML., Mech Dev. May 1, 1993; 41 (2-3): 121-8.        


Distribution of proneuropeptide Y-derived peptides in the brain of Rana esculenta and Xenopus laevis., Lázár G., J Comp Neurol. January 22, 1993; 327 (4): 551-71.


Does lineage determine the dopamine phenotype in the tadpole hypothalamus?: A quantitative analysis., Huang S., J Neurosci. April 1, 1992; 12 (4): 1351-62.                


Autoradiographic localisations of glutamatergic ligand binding sites in Xenopus brain., Henley JM., Neurosci Lett. August 5, 1991; 129 (1): 35-8.


Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis., Lázár GY., J Comp Neurol. August 1, 1991; 310 (1): 45-67.                                                              


Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary., Hayes WP., Development. November 1, 1990; 110 (3): 747-57.              


Central projections of the nervus terminalis in four species of amphibians., Hofmann MH., Brain Behav Evol. January 1, 1989; 34 (5): 301-7.


Temporal pattern of appearance and distribution of cholecystokinin-like peptides during development in Xenopus laevis., Scalise FW., Gen Comp Endocrinol. November 1, 1988; 72 (2): 303-11.    


Visualization of secretory activities in the Xenopus neurohypophysis by a high S/N video camera., Terakawa S., Dev Biol. December 1, 1987; 435 (1-2): 380-6.


The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis., Eagleson GW., J Embryol Exp Morphol. June 1, 1986; 95 1-14.              


Estrogen-induced progestin receptors in the brain and pituitary of the South African clawed frog, Xenopus laevis., Roy EJ., Neuroendocrinology. January 1, 1986; 42 (1): 51-6.


LHRH-like system in the brain of Xenopus laevis Daud: immunohistochemical idenfication., Doerr-Schott J., Cell Tissue Res. September 29, 1976; 172 (4): 477-86.

???pagination.result.page??? 1