Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (937) Expression Attributions Wiki
XB-ANAT-172

Papers associated with skeletal muscle (and tbx2)

Limit to papers also referencing gene:
Show all skeletal muscle papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains., Pless SA., J Gen Physiol. May 1, 2014; 143 (5): 645-56.              


Characterization of the insulin-like growth factor binding protein family in Xenopus tropicalis., Haramoto Y., Int J Dev Biol. January 1, 2014; 58 (9): 705-11.                                            


Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels I: wild-type skeletal muscle Na(V)1.4., Silva JR., J Gen Physiol. March 1, 2013; 141 (3): 309-21.                


Embryonic and adult isoforms of XLAP2 form microdomains associated with chromatin and the nuclear envelope., Chmielewska M., Cell Tissue Res. April 1, 2011; 344 (1): 97-110.          


Paraxial T-box genes, Tbx6 and Tbx1, are required for cranial chondrogenesis and myogenesis., Tazumi S., Dev Biol. October 15, 2010; 346 (2): 170-80.                                


FMR1/FXR1 and the miRNA pathway are required for eye and neural crest development., Gessert S., Dev Biol. May 1, 2010; 341 (1): 222-35.                                                              


The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos., Maczkowiak F., Dev Biol. April 15, 2010; 340 (2): 381-96.                                                    


Direct regulation of BK channels by phosphatidylinositol 4,5-bisphosphate as a novel signaling pathway., Vaithianathan T., J Gen Physiol. July 1, 2008; 132 (1): 13-28.                  


A function for dystroglycan in pronephros development in Xenopus laevis., Bello V., Dev Biol. May 1, 2008; 317 (1): 106-20.          


The muscle chloride channel ClC-1 is not directly regulated by intracellular ATP., Zifarelli G., J Gen Physiol. February 1, 2008; 131 (2): 109-16.          


UNC-98 links an integrin-associated complex to thick filaments in Caenorhabditis elegans muscle., Miller RK., J Cell Biol. December 18, 2006; 175 (6): 853-9.          


Reduction of XNkx2-10 expression leads to anterior defects and malformation of the embryonic heart., Allen BG., Mech Dev. October 1, 2006; 123 (10): 719-29.          


The RNA-binding protein fragile X-related 1 regulates somite formation in Xenopus laevis., Huot ME., Mol Biol Cell. September 1, 2005; 16 (9): 4350-61.                  


Expression of muscle LIM protein during early development in Xenopus laevis., Duan LJ., Int J Dev Biol. May 1, 2003; 47 (4): 299-302.        


How the community effect orchestrates muscle differentiation., Buckingham M., Bioessays. January 1, 2003; 25 (1): 13-6.


FGFR4 signaling is a necessary step in limb muscle differentiation., Marics I., Development. October 1, 2002; 129 (19): 4559-69.  


Mechanism of block of single protopores of the Torpedo chloride channel ClC-0 by 2-(p-chlorophenoxy)butyric acid (CPB)., Pusch M., J Gen Physiol. July 1, 2001; 118 (1): 45-62.                                      


Skeletal muscle sodium channel is affected by an epileptogenic beta1 subunit mutation., Moran O., Biochem Biophys Res Commun. March 23, 2001; 282 (1): 55-9.


Use of large-scale expression cloning screens in the Xenopus laevis tadpole to identify gene function., Grammer TC., Dev Biol. December 15, 2000; 228 (2): 197-210.              


Rodent nerve-muscle cell culture system for studies of neuromuscular junction development: refinements and applications., Daniels MP., Microsc Res Tech. April 1, 2000; 49 (1): 26-37.


Extracellular Mg(2+) modulates slow gating transitions and the opening of Drosophila ether-à-Go-Go potassium channels., Tang CY., J Gen Physiol. March 1, 2000; 115 (3): 319-38.                            


The position of the fast-inactivation gate during lidocaine block of voltage-gated Na+ channels., Vedantham V., J Gen Physiol. January 1, 1999; 113 (1): 7-16.              


The Xenopus homologue of the Drosophila gene tailless has a function in early eye development., Hollemann T., Development. July 1, 1998; 125 (13): 2425-32.          


A calcium signaling cascade essential for myosin thick filament assembly in Xenopus myocytes., Ferrari MB., J Cell Biol. June 15, 1998; 141 (6): 1349-56.            


Slow inactivation does not affect movement of the fast inactivation gate in voltage-gated Na+ channels., Vedantham V., J Gen Physiol. January 1, 1998; 111 (1): 83-93.          


Laminin-induced clustering of dystroglycan on embryonic muscle cells: comparison with agrin-induced clustering., Cohen MW., J Cell Biol. March 10, 1997; 136 (5): 1047-58.                                              


The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in the Xenopus embryo and transcriptional activation., Meersseman G., Mech Dev. January 1, 1997; 61 (1-2): 127-40.    


The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis., Jiang Y., Dev Biol. March 15, 1996; 174 (2): 258-70.          


Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation-regulated protein essential for development., Abe H., J Cell Biol. March 1, 1996; 132 (5): 871-85.                      


tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman., Evans SM., Development. November 1, 1995; 121 (11): 3889-99.                


Cloning and characterization of an Ito-like potassium channel from ferret ventricle., Comer MB., Am J Physiol. October 1, 1994; 267 (4 Pt 2): H1383-95.


Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis., Moon RT., Development. September 1, 1993; 119 (1): 97-111.                  


Induction of cardiac muscle differentiation in isolated animal pole explants of Xenopus laevis embryos., Logan M., Development. July 1, 1993; 118 (3): 865-75.              


Pretranslational mechanisms determine the type of potassium channels expressed in the rat skeletal and cardiac muscles., Matsubara H., J Biol Chem. July 15, 1991; 266 (20): 13324-8.


Intracellular free Mg2+ concentration in skeletal muscle fibres of frog and crayfish., Günzel D., Pflugers Arch. January 1, 1991; 417 (5): 446-53.


A retinoic acid receptor expressed in the early development of Xenopus laevis., Ellinger-Ziegelbauer H., Genes Dev. January 1, 1991; 5 (1): 94-104.              


Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin., Herrmann H., Development. February 1, 1989; 105 (2): 299-307.              


Expression of intermediate filament proteins during development of Xenopus laevis. III. Identification of mRNAs encoding cytokeratins typical of complex epithelia., Fouquet B., Development. December 1, 1988; 104 (4): 533-48.                      


Patch clamp characterization of sodium channels expressed from rat brain cDNA., Stühmer W., Eur Biophys J. January 1, 1987; 14 (3): 131-8.


Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium., Tsien RY., Biochim Biophys Acta. July 1, 1980; 599 (2): 623-38.


Light and electron microscopic investigation of ATPase activity in musculature during anuran tail resorption., Watanabe K., Histochemistry. November 24, 1978; 58 (1-2): 13-22.

???pagination.result.page??? 1