Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (937) Expression Attributions Wiki
XB-ANAT-172

Papers associated with skeletal muscle (and myf5)

Limit to papers also referencing gene:
Show all skeletal muscle papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Purine Biosynthesis Pathways Are Required for Myogenesis in Xenopus laevis., Duperray M., Cells. September 28, 2023; 12 (19):               


Klhl31 attenuates β-catenin dependent Wnt signaling and regulates embryo myogenesis., Abou-Elhamd A., Dev Biol. June 1, 2015; 402 (1): 61-71.              


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM., Front Aging Neurosci. May 19, 2015; 7 62.                                            


The RNA-binding protein Rbm24 is transiently expressed in myoblasts and is required for myogenic differentiation during vertebrate development., Grifone R., Mech Dev. November 1, 2014; 134 1-15.  


In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency., Gentsch GE., Cell Rep. September 26, 2013; 4 (6): 1185-96.                              


Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation., Yamane H., In Vitro Cell Dev Biol Anim. August 1, 2013; 49 (7): 524-36.


Early transcriptional targets of MyoD link myogenesis and somitogenesis., Maguire RJ., Dev Biol. November 15, 2012; 371 (2): 256-68.                                                    


Muscle development and differentiation in the urodele Ambystoma mexicanum., Banfi S., Dev Growth Differ. May 1, 2012; 54 (4): 489-502.


Developing laryngeal muscle of Xenopus laevis as a model system: androgen-driven myogenesis controls fiber type transformation., Nasipak B., Dev Neurobiol. April 1, 2012; 72 (4): 664-75.


EBF proteins participate in transcriptional regulation of Xenopus muscle development., Green YS., Dev Biol. October 1, 2011; 358 (1): 240-50.                    


Origin of muscle satellite cells in the Xenopus embryo., Daughters RS., Development. March 1, 2011; 138 (5): 821-30.                          


A conserved MRF4 promoter drives transgenic expression in Xenopus embryonic somites and adult muscle., Hinterberger TJ., Int J Dev Biol. January 1, 2010; 54 (4): 617-25.              


Vestigial like gene family expression in Xenopus: common and divergent features with other vertebrates., Faucheux C., Int J Dev Biol. January 1, 2010; 54 (8-9): 1375-82.                            


Early activation of FGF and nodal pathways mediates cardiac specification independently of Wnt/beta-catenin signaling., Samuel LJ., PLoS One. October 28, 2009; 4 (10): e7650.                


Muscular dystrophy candidate gene FRG1 is critical for muscle development., Hanel ML., Dev Dyn. June 1, 2009; 238 (6): 1502-12.        


Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation., Merrick D., Dis Model Mech. January 1, 2009; 2 (7-8): 374-88.


The myocardin-related transcription factor, MASTR, cooperates with MyoD to activate skeletal muscle gene expression., Meadows SM., Proc Natl Acad Sci U S A. February 5, 2008; 105 (5): 1545-50.        


Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation., Maves L., Development. September 1, 2007; 134 (18): 3371-82.


Myoskeletin, a factor related to Myocardin, is expressed in somites and required for hypaxial muscle formation in Xenopus., Zhao H., Int J Dev Biol. January 1, 2007; 51 (4): 315-20.              


The p38 MAPK signaling pathway: a major regulator of skeletal muscle development., Keren A., Mol Cell Endocrinol. June 27, 2006; 252 (1-2): 224-30.


A novel role for lbx1 in Xenopus hypaxial myogenesis., Martin BL., Development. January 1, 2006; 133 (2): 195-208.                                


p38 MAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development., Keren A., Dev Biol. December 1, 2005; 288 (1): 73-86.              


Myocardin is sufficient and necessary for cardiac gene expression in Xenopus., Small EM., Development. March 1, 2005; 132 (5): 987-97.            


Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis., Grimaldi A., Development. July 1, 2004; 131 (14): 3249-62.            


Specific activation of the acetylcholine receptor subunit genes by MyoD family proteins., Charbonnier F., J Biol Chem. August 29, 2003; 278 (35): 33169-74.          


T-box binding site mediates the dorsal activation of myf-5 in Xenopus gastrula embryos., Lin GF., Dev Dyn. January 1, 2003; 226 (1): 51-8.


A single cdk inhibitor, p27Xic1, functions beyond cell cycle regulation to promote muscle differentiation in Xenopus., Vernon AE., Development. January 1, 2003; 130 (1): 71-83.            


FGFR4 signaling is a necessary step in limb muscle differentiation., Marics I., Development. October 1, 2002; 129 (19): 4559-69.  


Repression through a distal TCF-3 binding site restricts Xenopus myf-5 expression in gastrula mesoderm., Yang J., Mech Dev. July 1, 2002; 115 (1-2): 79-89.              


Purkinje fibers of the avian heart express a myogenic transcription factor program distinct from cardiac and skeletal muscle., Takebayashi-Suzuki K., Dev Biol. June 15, 2001; 234 (2): 390-401.


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            


Localization of Myf-5, MRF4 and alpha cardiac actin mRNAs in regenerating Xenopus skeletal muscle., Nicolas N., C R Acad Sci III. May 1, 1998; 321 (5): 355-64.


Cardiac myosin heavy chain expression during heart development in Xenopus laevis., Cox WG., Differentiation. April 1, 1995; 58 (4): 269-80.                


The MyoD family of myogenic factors is regulated by electrical activity: isolation and characterization of a mouse Myf-5 cDNA., Buonanno A., Nucleic Acids Res. February 11, 1992; 20 (3): 539-44.


Expression of XMyoD protein in early Xenopus laevis embryos., Hopwood ND., Development. January 1, 1992; 114 (1): 31-8.      

???pagination.result.page??? 1