Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6691) Expression Attributions Wiki
XB-ANAT-177

Papers associated with eye (and pcna)

Limit to papers also referencing gene:
Show all eye papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Regeneration from three cellular sources and ectopic mini-retina formation upon neurotoxic retinal degeneration in Xenopus., Parain K., Glia. April 1, 2024; 72 (4): 759-776.                            


The cellular basis of cartilage growth and shape change in larval and metamorphosing Xenopus frogs., Rose CS., PLoS One. January 1, 2023; 18 (1): e0277110.                                  


Cellular and molecular profiles of larval and adult Xenopus corneal epithelia resolved at the single-cell level., Sonam S., Dev Biol. November 1, 2022; 491 13-30.                                


CRISPR/Cas9-Mediated Models of Retinitis Pigmentosa Reveal Differential Proliferative Response of Müller Cells between Xenopus laevis and Xenopus tropicalis., Parain K., Cells. February 25, 2022; 11 (5):                   


Evi5 is required for Xenopus limb and tail regeneration., Yang L., Front Cell Dev Biol. January 1, 2022; 10 1027666.                                


Deep learning is widely applicable to phenotyping embryonic development and disease., Naert T., Development. November 1, 2021; 148 (21):                                                                 


The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos., Willsey HR., Development. June 22, 2020; 147 (21):                             


Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway., Solini GE., Dev Biol. April 15, 2020; 460 (2): 99-107.        


RBL1 (p107) functions as tumor suppressor in glioblastoma and small-cell pancreatic neuroendocrine carcinoma in Xenopus tropicalis., Naert T., Oncogene. March 1, 2020; 39 (13): 2692-2706.          


SLC20A1 Is Involved in Urinary Tract and Urorectal Development., Rieke JM., Front Cell Dev Biol. January 1, 2020; 8 567.                                


The Stemness Gene Mex3A Is a Key Regulator of Neuroblast Proliferation During Neurogenesis., Naef V., Front Cell Dev Biol. January 1, 2020; 8 549533.            


Katanin-like protein Katnal2 is required for ciliogenesis and brain development in Xenopus embryos., Willsey HR., Dev Biol. October 15, 2018; 442 (2): 276-287.                                      


Melanocortin Receptor 4 Signaling Regulates Vertebrate Limb Regeneration., Zhang M., Dev Cell. August 20, 2018; 46 (4): 397-409.e5.                              


The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis., Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.                      


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis., Naert T., Sci Rep. October 14, 2016; 6 35264.                          


Ptbp1 and Exosc9 knockdowns trigger skin stability defects through different pathways., Noiret M., Dev Biol. January 15, 2016; 409 (2): 489-501.                


Understanding How the Subcommissural Organ and Other Periventricular Secretory Structures Contribute via the Cerebrospinal Fluid to Neurogenesis., Guerra MM., Front Cell Neurosci. September 23, 2015; 9 480.                


YAP controls retinal stem cell DNA replication timing and genomic stability., Cabochette P., Elife. September 22, 2015; 4 e08488.                                    


The role of folate metabolism in orofacial development and clefting., Wahl SE., Dev Biol. September 1, 2015; 405 (1): 108-22.                                  


TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis., Van Nieuwenhuysen T., Oncoscience. May 19, 2015; 2 (5): 555-66.              


Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification., Huyck RW., Neurotoxicol Teratol. January 1, 2015; 47 102-13.                


Isoquercitrin suppresses colon cancer cell growth in vitro by targeting the Wnt/β-catenin signaling pathway., Amado NG., J Biol Chem. December 19, 2014; 289 (51): 35456-67.                  


Maturin is a novel protein required for differentiation during primary neurogenesis., Martinez-De Luna RI., Dev Biol. December 1, 2013; 384 (1): 26-40.                        


ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis., Janesick A., Development. August 1, 2013; 140 (15): 3095-106.                                                              


Transgenic Xenopus laevis with the ef1-α promoter as an experimental tool for amphibian retinal regeneration study., Ueda Y., Genesis. August 1, 2012; 50 (8): 642-50.            


Sumoylation controls retinal progenitor proliferation by repressing cell cycle exit in Xenopus laevis., Terada K., Dev Biol. November 1, 2010; 347 (1): 180-94.                                                  


RNA helicase Ddx39 is expressed in the developing central nervous system, limb, otic vesicle, branchial arches and facial mesenchyme of Xenopus laevis., Wilson JM., Gene Expr Patterns. January 1, 2010; 10 (1): 44-52.          


A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina., Agathocleous M., Development. October 1, 2009; 136 (19): 3289-99.                          


Docking of a specialized PIP Box onto chromatin-bound PCNA creates a degron for the ubiquitin ligase CRL4Cdt2., Havens CG., Mol Cell. July 10, 2009; 35 (1): 93-104.


Proofreading exonuclease activity of human DNA polymerase delta and its effects on lesion-bypass DNA synthesis., Fazlieva R., Nucleic Acids Res. May 1, 2009; 37 (9): 2854-66.                    


hnRNP I inhibits Notch signaling and regulates intestinal epithelial homeostasis in the zebrafish., Yang J., PLoS Genet. February 1, 2009; 5 (2): e1000363.            


Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion., Schlosser G., Dev Biol. August 1, 2008; 320 (1): 199-214.                  


Development of the retinotectal system in the direct-developing frog Eleutherodactylus coqui in comparison with other anurans., Schlosser G., Front Zool. June 23, 2008; 5 9.              


Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration., Lin G., Dev Biol. April 15, 2008; 316 (2): 323-35.              


Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina., Yoshii C., Dev Biol. March 1, 2007; 303 (1): 45-56.                    


Two different transgenes to study gene silencing and re-expression during zebrafish caudal fin and retinal regeneration., Thummel R., ScientificWorldJournal. December 15, 2006; 6 Suppl 1 65-81.


De novo assembly of genuine replication forks on an immobilized circular plasmid in Xenopus egg extracts., Zembutsu A., Nucleic Acids Res. July 26, 2006; 34 (13): e91.          


PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication., Arias EE., Nat Cell Biol. January 1, 2006; 8 (1): 84-90.


Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts., Leach CA., J Cell Biol. December 19, 2005; 171 (6): 947-54.                


Secondary neurogenesis in the brain of the African clawed frog, Xenopus laevis, as revealed by PCNA, Delta-1, Neurogenin-related-1, and NeuroD expression., Wullimann MF., J Comp Neurol. August 29, 2005; 489 (3): 387-402.


ERK1 activation is required for S-phase onset and cell cycle progression after fertilization in sea urchin embryos., Philipova R., Development. February 1, 2005; 132 (3): 579-89.


Embryonic expression of pre-initiation DNA replication factors in Xenopus laevis., Walter BE., Gene Expr Patterns. November 1, 2004; 5 (1): 81-9.                                


Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis., Grimaldi A., Development. July 1, 2004; 131 (14): 3249-62.            


A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos., Stancheva I., Mol Cell. August 1, 2003; 12 (2): 425-35.                          


Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons., Gervasi C., J Comp Neurol. July 31, 2000; 423 (3): 512-31.                      


Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos., Stancheva I., Genes Dev. February 1, 2000; 14 (3): 313-27.                    


cDNA cloning of a stage-specific gene expressed during HCG-induced spermatogenesis in the Japanese eel., Miura C., Dev Growth Differ. August 1, 1999; 41 (4): 463-71.  


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            


Dynamic and differential Oct-1 expression during early Xenopus embryogenesis: persistence of Oct-1 protein following down-regulation of the RNA., Veenstra GJ., Mech Dev. April 1, 1995; 50 (2-3): 103-17.                            

???pagination.result.page??? 1