Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (98) Expression Attributions Wiki
XB-ANAT-178

Papers associated with cornea

Limit to papers also referencing gene:
Results 1 - 50 of 98 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs., Sonam S., Exp Eye Res. January 1, 2019; 184 107-125.                        


The role of sensory innervation in cornea-lens regeneration., Perry KJ., Dev Dyn. January 1, 2019; 248 (7): 530-544.          


A sclerocornea-associated RAD21 variant induces corneal stroma disorganization., Zhang BN., Exp Eye Res. January 1, 2019; 185 107687.          


Understanding cornea homeostasis and wound healing using a novel model of stem cell deficiency in Xenopus., Adil MT., Exp Eye Res. January 1, 2019; 187 107767.                                        


Uroplakins play conserved roles in egg fertilization and acquired additional urothelial functions during mammalian divergence., Liao Y., Mol Biol Cell. October 10, 2018; mbcE18080496.                  


A model for investigating developmental eye repair in Xenopus laevis., Kha CX., Exp Eye Res. January 1, 2018; 169 38-47.                


Frizzled 3 acts upstream of Alcam during embryonic eye development., Seigfried FA., Dev Biol. January 1, 2017; 426 (1): 69-83.                        


Functional assessment of SLC4A11, an integral membrane protein mutated in corneal dystrophies., Loganathan SK., Am J Physiol Cell Physiol. November 1, 2016; 311 (5): C735-C748.


Lens regeneration from the cornea requires suppression of Wnt/β-catenin signaling., Hamilton PW., Exp Eye Res. January 1, 2016; 145 206-215.          


The lens regenerative competency of limbal vs. central regions of mature Xenopus cornea epithelium., Hamilton PW., Exp Eye Res. January 1, 2016; 152 94-99.    


Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients., Nakayama T., Dev Biol. December 15, 2015; 408 (2): 328-44.                              


Molecular mechanism of CHRDL1-mediated X-linked megalocornea in humans and in Xenopus model., Pfirrmann T., Hum Mol Genet. June 1, 2015; 24 (11): 3119-32.


Prolonged in vivo imaging of Xenopus laevis., Hamilton PW., Dev Dyn. August 1, 2014; 243 (8): 1011-9.    


Retinoic acid regulation by CYP26 in vertebrate lens regeneration., Thomas AG., Dev Biol. February 15, 2014; 386 (2): 291-301.            


Diurnal variation of tight junction integrity associates inversely with matrix metalloproteinase expression in Xenopus laevis corneal epithelium: implications for circadian regulation of homeostatic surface cell desquamation., Wiechmann AF., PLoS One. January 1, 2014; 9 (11): e113810.                


Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis., Hempel A., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.                                              


Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases., Vilas GL., Hum Mol Genet. November 15, 2013; 22 (22): 4579-90.            


The structure and development of Xenopus laevis cornea., Hu W., Exp Eye Res. November 1, 2013; 116 109-28.                            


Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells., Perry KJ., Dev Biol. February 15, 2013; 374 (2): 281-94.                


Axonal growth towards Xenopus skin in vitro is mediated by matrix metalloproteinase activity., Tonge D., Eur J Neurosci. February 1, 2013; 37 (4): 519-31.                  


sox4 and sox11 function during Xenopus laevis eye development., Cizelsky W., PLoS One. January 1, 2013; 8 (7): e69372.              


Antagonistic cross-regulation between Wnt and Hedgehog signalling pathways controls post-embryonic retinal proliferation., Borday C., Development. October 1, 2012; 139 (19): 3499-509.                    


Regional differences in rat conjunctival ion transport activities., Yu D., Am J Physiol Cell Physiol. October 1, 2012; 303 (7): C767-80.


Transgenic Xenopus laevis with the ef1-α promoter as an experimental tool for amphibian retinal regeneration study., Ueda Y., Genesis. August 1, 2012; 50 (8): 642-50.            


Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling., Day RC., BMC Dev Biol. November 15, 2011; 11 54.                                                


In situ visualization of protein interactions in sensory neurons: glutamic acid-rich proteins (GARPs) play differential roles for photoreceptor outer segment scaffolding., Ritter LM., J Neurosci. August 3, 2011; 31 (31): 11231-43.              


FGF signaling is required for lens regeneration in Xenopus laevis., Fukui L., Biol Bull. August 1, 2011; 221 (1): 137-45.


Molecular and cellular aspects of amphibian lens regeneration., Henry JJ., Prog Retin Eye Res. November 1, 2010; 29 (6): 543-55.


The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis., Perry KJ., Dev Dyn. November 1, 2010; 239 (11): 3024-37.                


Melatonin receptor expression in Xenopus laevis surface corneal epithelium: diurnal rhythm of lateral membrane localization., Wiechmann AF., Mol Vis. November 17, 2009; 15 2384-403.                    


Electric currents in Xenopus tadpole tail regeneration., Reid B., Dev Biol. November 1, 2009; 335 (1): 198-207.                


Retinal regeneration in the Xenopus laevis tadpole: a new model system., Vergara MN., Mol Vis. September 14, 2009; 15 1000-13.          


Retina and lens regeneration in anuran amphibians., Filoni S., Semin Cell Dev Biol. July 1, 2009; 20 (5): 528-34.  


Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms., Beck CW., Dev Dyn. June 1, 2009; 238 (6): 1226-48.          


Pleiotropic effects in Eya3 knockout mice., Söker T., BMC Dev Biol. July 28, 2008; 8 118.                    


Differential expression of the HMGN family of chromatin proteins during ocular development., Lucey MM., Gene Expr Patterns. July 1, 2008; 8 (6): 433-7.


Psf2 plays important roles in normal eye development in Xenopus laevis., Walter BE., Mol Vis. May 19, 2008; 14 906-21.                  


The optic vesicle promotes cornea to lens transdifferentiation in larval Xenopus laevis., Cannata SM., J Anat. May 1, 2008; 212 (5): 621-6.


The lens-regenerating competence in the outer cornea and epidermis of larval Xenopus laevis is related to pax6 expression., Gargioli C., J Anat. May 1, 2008; 212 (5): 612-20.


Wnt6 expression in epidermis and epithelial tissues during Xenopus organogenesis., Lavery DL., Dev Dyn. March 1, 2008; 237 (3): 768-79.          


Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina., Yoshii C., Dev Biol. March 1, 2007; 303 (1): 45-56.                    


tBid mediated activation of the mitochondrial death pathway leads to genetic ablation of the lens in Xenopus laevis., Du Pasquier D., Genesis. January 1, 2007; 45 (1): 1-10.            


Experimental analysis of lens-forming capacity in Xenopus borealis larvae., Filoni S., J Exp Zool A Comp Exp Biol. July 1, 2006; 305 (7): 538-50.


Neuronal leucine-rich repeat 6 (XlNLRR-6) is required for late lens and retina development in Xenopus laevis., Wolfe AD., Dev Dyn. April 1, 2006; 235 (4): 1027-41.          


Bves, a member of the Popeye domain-containing gene family., Osler ME., Dev Dyn. March 1, 2006; 235 (3): 586-93.  


Requirement for betaB1-crystallin promoter of Xenopus laevis in embryonic lens development and lens regeneration., Mizuno N., Dev Growth Differ. April 1, 2005; 47 (3): 131-40.          


The inductive capacity of proteins secreted by cells of corneal epithelium., Zemchikhina VN., Tsitologiia. January 1, 2005; 47 (1): 38-43.


Lens-forming competence in the epidermis of Xenopus laevis during development., Arresta E., J Exp Zool A Comp Exp Biol. January 1, 2005; 303 (1): 1-12.


Embryonic expression of pre-initiation DNA replication factors in Xenopus laevis., Walter BE., Gene Expr Patterns. November 1, 2004; 5 (1): 81-9.                                


Localization of Mel1b melatonin receptor-like immunoreactivity in ocular tissues of Xenopus laevis., Wiechmann AF., Exp Eye Res. October 1, 2004; 79 (4): 585-94.                  

Page(s): 1 2 Next

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.13.0


Major funding for Xenbase is provided by grant P41 HD064556