Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (441) Expression Attributions Wiki
XB-ANAT-190

Papers associated with inner ear (and tbx2)

Limit to papers also referencing gene:
Show all inner ear papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The Human Acid-Sensing Ion Channel ASIC1a: Evidence for a Homotetrameric Assembly State at the Cell Surface., van Bemmelen MX., PLoS One. August 4, 2015; 10 (8): e0135191.              


Opportunities and limits of the one gene approach: the ability of Atoh1 to differentiate and maintain hair cells depends on the molecular context., Jahan I., Front Cell Neurosci. February 5, 2015; 9 26.  


A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements., Square T., Dev Biol. January 15, 2015; 397 (2): 293-304.                                            


Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR., Cui G., J Gen Physiol. August 1, 2014; 144 (2): 159-79.                          


Sp8 regulates inner ear development., Chung HA., Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6329-34.                                                    


A conserved pre-block interaction motif regulates potassium channel activation and N-type inactivation., Pfaffinger PJ., PLoS One. January 1, 2013; 8 (11): e79891.                  


High Ca(2+) permeability of a peptide-gated DEG/ENaC from Hydra., Dürrnagel S., J Gen Physiol. October 1, 2012; 140 (4): 391-402.                


Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning., Steventon B., Dev Biol. July 1, 2012; 367 (1): 55-65.                


Mechanism of inhibition of connexin channels by the quinine derivative N-benzylquininium., Rubinos C., J Gen Physiol. January 1, 2012; 139 (1): 69-82.                    


PAPC and the Wnt5a/Ror2 pathway control the invagination of the otic placode in Xenopus., Jung B., BMC Dev Biol. June 10, 2011; 11 36.                          


Multiple enhancers located in a 1-Mb region upstream of POU3F4 promote expression during inner ear development and may be required for hearing., Naranjo S., Hum Genet. October 1, 2010; 128 (4): 411-9.          


The R109H variant of fascin-2, a developmentally regulated actin crosslinker in hair-cell stereocilia, underlies early-onset hearing loss of DBA/2J mice., Shin JB., J Neurosci. July 21, 2010; 30 (29): 9683-94.              


Fast and slow voltage sensor rearrangements during activation gating in Kv1.2 channels detected using tetramethylrhodamine fluorescence., Horne AJ., J Gen Physiol. July 1, 2010; 136 (1): 83-99.                      


Diffusion of a soluble protein, photoactivatable GFP, through a sensory cilium., Calvert PD., J Gen Physiol. March 1, 2010; 135 (3): 173-96.                          


An electrostatic interaction between TEA and an introduced pore aromatic drives spring-in-the-door inactivation in Shaker potassium channels., Ahern CA., J Gen Physiol. December 1, 2009; 134 (6): 461-9.        


The analysis of desensitizing CNGA1 channels reveals molecular interactions essential for normal gating., Mazzolini M., J Gen Physiol. April 1, 2009; 133 (4): 375-86.            


Sox9 is required for invagination of the otic placode in mice., Barrionuevo F., Dev Biol. May 1, 2008; 317 (1): 213-24.          


Dynamic expression of FXYD6 in the inner ear suggests a role of the protein in endolymph homeostasis and neuronal activity., Delprat B., Dev Dyn. September 1, 2007; 236 (9): 2534-40.


Structural determinants of the closed KCa3.1 channel pore in relation to channel gating: results from a substituted cysteine accessibility analysis., Klein H., J Gen Physiol. April 1, 2007; 129 (4): 299-315.                              


Ring of negative charge in BK channels facilitates block by intracellular Mg2+ and polyamines through electrostatics., Zhang Y., J Gen Physiol. August 1, 2006; 128 (2): 185-202.                


The role of Paraxial Protocadherin in Xenopus otic placode development., Hu RY., Biochem Biophys Res Commun. June 23, 2006; 345 (1): 239-47.            


Access of quaternary ammonium blockers to the internal pore of cyclic nucleotide-gated channels: implications for the location of the gate., Contreras JE., J Gen Physiol. May 1, 2006; 127 (5): 481-94.                        


Electrostatics in the cytoplasmic pore produce intrinsic inward rectification in kir2.1 channels., Yeh SH., J Gen Physiol. December 1, 2005; 126 (6): 551-62.                    


Probing the geometry of the inner vestibule of BK channels with sugars., Brelidze TI., J Gen Physiol. August 1, 2005; 126 (2): 105-21.              


Cysteine accessibility in ClC-0 supports conservation of the ClC intracellular vestibule., Engh AM., J Gen Physiol. June 1, 2005; 125 (6): 601-17.                  


Molecular basis of inward rectification: polyamine interaction sites located by combined channel and ligand mutagenesis., Kurata HT., J Gen Physiol. November 1, 2004; 124 (5): 541-54.                


Regulation of K+ flow by a ring of negative charges in the outer pore of BKCa channels. Part I: Aspartate 292 modulates K+ conduction by external surface charge effect., Haug T., J Gen Physiol. August 1, 2004; 124 (2): 173-84.              


Molecular basis of pH and Ca2+ regulation of aquaporin water permeability., Németh-Cahalan KL., J Gen Physiol. May 1, 2004; 123 (5): 573-80.            


Specification of the otic placode depends on Sox9 function in Xenopus., Saint-Germain N., Development. April 1, 2004; 131 (8): 1755-63.              


Tight coupling of rubidium conductance and inactivation in human KCNQ1 potassium channels., Seebohm G., J Physiol. October 15, 2003; 552 (Pt 2): 369-78.


Gating competence of constitutively open CLC-0 mutants revealed by the interaction with a small organic Inhibitor., Traverso S., J Gen Physiol. September 1, 2003; 122 (3): 295-306.                                  


Structural and functional role of the extracellular s5-p linker in the HERG potassium channel., Liu J., J Gen Physiol. November 1, 2002; 120 (5): 723-37.                  


Trapping of a methanesulfonanilide by closure of the HERG potassium channel activation gate., Mitcheson JS., J Gen Physiol. March 1, 2000; 115 (3): 229-40.                    


Deletion of the S3-S4 linker in the Shaker potassium channel reveals two quenching groups near the outside of S4., Sørensen JB., J Gen Physiol. February 1, 2000; 115 (2): 209-22.                    


A gene trap approach in Xenopus., Bronchain OJ., Curr Biol. October 21, 1999; 9 (20): 1195-8.        


On the molecular basis of ion permeation in the epithelial Na+ channel., Kellenberger S., J Gen Physiol. July 1, 1999; 114 (1): 13-30.                  


Inactivation gating of Kv4 potassium channels: molecular interactions involving the inner vestibule of the pore., Jerng HH., J Gen Physiol. May 1, 1999; 113 (5): 641-60.                        


Divalent cations inhibit IsK/KvLQT1 channels in excised membrane patches of strial marginal cells., Shen Z., Hear Res. September 1, 1998; 123 (1-2): 157-67.


The initiation of the muscle action potential., Neumann E., Arch Physiol Biochem. October 1, 1996; 104 (6): 731-44.


Regulation of the Xenopus labial homeodomain genes, HoxA1 and HoxD1: activation by retinoids and peptide growth factors., Kolm PJ., Dev Biol. January 1, 1995; 167 (1): 34-49.      

???pagination.result.page??? 1