Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (17) Expression Attributions Wiki
XB-ANAT-193

Papers associated with utricle

Limit to papers also referencing gene:
Results 1 - 17 of 17 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Semicircular Canal Influences on the Developmental Tuning of the Translational Vestibulo-Ocular Reflex., Branoner F., Front Neurol. January 1, 2018; 9 404.


Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties., Gordy C., Dev Neurobiol. January 1, 2018; 78 (11): 1064-1080.                  


Spectrin βV adaptive mutations and changes in subcellular location correlate with emergence of hair cell electromotility in mammalians., Cortese M., Proc Natl Acad Sci U S A. January 1, 2017; 114 (8): 2054-2059.              


RNA-Seq and microarray analysis of the Xenopus inner ear transcriptome discloses orthologous OMIM(®) genes for hereditary disorders of hearing and balance., Ramírez-Gordillo D., BMC Res Notes. November 18, 2015; 8 691.      


Sensory afferent segregation in three-eared frogs resemble the dominance columns observed in three-eyed frogs., Elliott KL., Sci Rep. September 21, 2015; 5 8338.                


Restricted neural plasticity in vestibulospinal pathways after unilateral labyrinthectomy as the origin for scoliotic deformations., Lambert FM., J Neurosci. April 17, 2013; 33 (16): 6845-56.                


The R109H variant of fascin-2, a developmentally regulated actin crosslinker in hair-cell stereocilia, underlies early-onset hearing loss of DBA/2J mice., Shin JB., J Neurosci. July 21, 2010; 30 (29): 9683-94.              


Long-term consequences of Sox9 depletion on inner ear development., Park BY., Dev Dyn. April 1, 2010; 239 (4): 1102-12.          


Semicircular canal size determines the developmental onset of angular vestibuloocular reflexes in larval Xenopus., Lambert FM., J Neurosci. August 6, 2008; 28 (32): 8086-95.                  


Myosin VI and VIIa distribution among inner ear epithelia in diverse fishes., Coffin AB., Hear Res. February 1, 2007; 224 (1-2): 15-26.    


Cell proliferation during the early compartmentalization of the Xenopus laevis inner ear., Quick QA., Int J Dev Biol. January 1, 2007; 51 (3): 201-9.          


Inner ear formation during the early larval development of Xenopus laevis., Quick QA., Dev Dyn. November 1, 2005; 234 (3): 791-801.      


Three-dimensional morphology of inner ear development in Xenopus laevis., Bever MM., Dev Dyn. July 1, 2003; 227 (3): 422-30.            


The Dlx5 homeobox gene is essential for vestibular morphogenesis in the mouse embryo through a BMP4-mediated pathway., Merlo GR., Dev Biol. August 1, 2002; 248 (1): 157-69.


Otoliths developed in microgravity., Wiederhold ML., J Gravit Physiol. July 1, 2000; 7 (2): P39-42.


Scanning electron microscopic study of amphibians otoconia., Kido T., Auris Nasus Larynx. April 1, 1997; 24 (2): 125-30.


Distribution of type II collagen mRNA in Xenopus embryos visualized by whole-mount in situ hybridization., Bieker JJ., J Histochem Cytochem. August 1, 1992; 40 (8): 1117-20.  

Page(s): 1

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.1


Major funding for Xenbase is provided by grant P41 HD064556