Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (5836) Expression Attributions Wiki
XB-ANAT-2

Papers associated with ectoderm∨derBy=4 (and isl1)

Limit to papers also referencing gene:
Show all ectoderm∨derBy=4 papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Ndst1, a heparan sulfate modification enzyme, regulates neuroectodermal patterning by enhancing Wnt signaling in Xenopus., Yamamoto T., Dev Growth Differ. April 1, 2023; 65 (3): 153-160.              


Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR., Sempou E., Nat Commun. November 5, 2022; 13 (1): 6681.                                            


Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network., Mukherjee S., Elife. September 7, 2020; 9                           


Identification of retinal homeobox (rax) gene-dependent genes by a microarray approach: The DNA endoglycosylase neil3 is a major downstream component of the rax genetic pathway., Pan Y., Dev Dyn. November 1, 2018; 247 (11): 1199-1210.                            


A model for investigating developmental eye repair in Xenopus laevis., Kha CX., Exp Eye Res. April 1, 2018; 169 38-47.                


KDM3A-mediated demethylation of histone H3 lysine 9 facilitates the chromatin binding of Neurog2 during neurogenesis., Lin H., Development. October 15, 2017; 144 (20): 3674-3685.                          


Conserved gene regulatory module specifies lateral neural borders across bilaterians., Li Y., Proc Natl Acad Sci U S A. August 1, 2017; 114 (31): E6352-E6360.      


Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes., Riddiford N., Elife. August 31, 2016; 5                                                                         


The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification., Hatch VL., Dev Biol. August 15, 2016; 416 (2): 361-72.                                    


Spatial regulation of cell cohesion by Wnt5a during second heart field progenitor deployment., Li D., Dev Biol. April 1, 2016; 412 (1): 18-31.  


Transcriptional regulator PRDM12 is essential for human pain perception., Chen YC, Chen YC., Nat Genet. July 1, 2015; 47 (7): 803-8.          


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM., Front Aging Neurosci. May 19, 2015; 7 62.                                            


The requirement of histone modification by PRDM12 and Kdm4a for the development of pre-placodal ectoderm and neural crest in Xenopus., Matsukawa S., Dev Biol. March 1, 2015; 399 (1): 164-176.                    


Temporal and spatial expression analysis of peripheral myelin protein 22 (Pmp22) in developing Xenopus., Tae HJ., Gene Expr Patterns. January 1, 2015; 17 (1): 26-30.              


The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception., Nagy V., Cell Cycle. January 1, 2015; 14 (12): 1799-808.    


Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates., Yajima H., BMC Biol. May 29, 2014; 12 40.                        


Fgfr signaling is required as the early eye field forms to promote later patterning and morphogenesis of the eye., Atkinson-Leadbeater K., Dev Dyn. May 1, 2014; .              


The evolutionary history of vertebrate cranial placodes--I: cell type evolution., Patthey C., Dev Biol. May 1, 2014; 389 (1): 82-97.        


Developmental expression of Pitx2c in Xenopus trigeminal and profundal placodes., Jeong YH., Int J Dev Biol. January 1, 2014; 58 (9): 701-4.        


Islet-1 immunoreactivity in the developing retina of Xenopus laevis., Álvarez-Hernán G., ScientificWorldJournal. November 11, 2013; 2013 740420.              


Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein., Hulstrand AM., Dev Biol. October 15, 2013; 382 (2): 385-99.                              


TBX3 Directs Cell-Fate Decision toward Mesendoderm., Weidgang CE., Stem Cell Reports. August 29, 2013; 1 (3): 248-65.                


MRAS GTPase is a novel stemness marker that impacts mouse embryonic stem cell plasticity and Xenopus embryonic cell fate., Mathieu ME., Development. August 1, 2013; 140 (16): 3311-22.              


sfrp1 promotes cardiomyocyte differentiation in Xenopus via negative-feedback regulation of Wnt signalling., Gibb N., Development. April 1, 2013; 140 (7): 1537-49.                                    


Metabolic differentiation in the embryonic retina., Agathocleous M., Nat Cell Biol. August 1, 2012; 14 (8): 859-64.        


Xaml1/Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus., Park BY., Dev Biol. February 1, 2012; 362 (1): 65-75.                


Xenopus Dbx2 is involved in primary neurogenesis and early neural plate patterning., Ma P., Biochem Biophys Res Commun. August 19, 2011; 412 (1): 170-4.            


Fgf is required to regulate anterior-posterior patterning in the Xenopus lateral plate mesoderm., Deimling SJ., Mech Dev. January 1, 2011; 128 (7-10): 327-41.                                


Sumoylation controls retinal progenitor proliferation by repressing cell cycle exit in Xenopus laevis., Terada K., Dev Biol. November 1, 2010; 347 (1): 180-94.                                                  


Expression analysis of Runx3 and other Runx family members during Xenopus development., Park BY., Gene Expr Patterns. June 1, 2010; 10 (4-5): 159-66.                


Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2., Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.                              


Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development., Gutkovich YE., Dev Biol. February 1, 2010; 338 (1): 50-62.                  


Islet-1 is required for ventral neuron survival in Xenopus., Shi Y, Shi Y., Biochem Biophys Res Commun. October 23, 2009; 388 (3): 506-10.        


Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis., Gessert S., Dev Biol. October 15, 2009; 334 (2): 395-408.          


Generation of functional eyes from pluripotent cells., Viczian AS., PLoS Biol. August 1, 2009; 7 (8): e1000174.                                


In vitro organogenesis from undifferentiated cells in Xenopus., Asashima M., Dev Dyn. June 1, 2009; 238 (6): 1309-20.                      


Retinal regeneration in the Xenopus laevis tadpole: a new model system., Vergara MN., Mol Vis. May 18, 2009; 15 1000-13.          


Two Hoxc6 transcripts are differentially expressed and regulate primary neurogenesis in Xenopus laevis., Bardine N., Dev Dyn. March 1, 2009; 238 (3): 755-65.              


Xenopus NM23-X4 regulates retinal gliogenesis through interaction with p27Xic1., Mochizuki T., Neural Dev. January 5, 2009; 4 1.                      


Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis., Illes JC., Dev Dyn. January 1, 2009; 238 (1): 194-203.                                


Loss of REEP4 causes paralysis of the Xenopus embryo., Argasinska J., Int J Dev Biol. January 1, 2009; 53 (1): 37-43.          


DM-GRASP/ALCAM/CD166 is required for cardiac morphogenesis and maintenance of cardiac identity in first heart field derived cells., Gessert S., Dev Biol. September 1, 2008; 321 (1): 150-61.            


Expression study of cadherin7 and cadherin20 in the embryonic and adult rat central nervous system., Takahashi M., BMC Dev Biol. June 23, 2008; 8 87.                


Matrix metalloproteinases are required for retinal ganglion cell axon guidance at select decision points., Hehr CL., Development. August 1, 2005; 132 (15): 3371-9.            


Identification of NKL, a novel Gli-Kruppel zinc-finger protein that promotes neuronal differentiation., Lamar E., Development. April 1, 2001; 128 (8): 1335-46.              


Development of the pancreas in Xenopus laevis., Kelly OG., Dev Dyn. August 1, 2000; 218 (4): 615-27.                  


The control of Xenopus embryonic primary neurogenesis is mediated by retinoid signalling in the neurectoderm., Sharpe C., Mech Dev. March 1, 2000; 91 (1-2): 69-80.              


neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas., Gradwohl G., Proc Natl Acad Sci U S A. February 15, 2000; 97 (4): 1607-11.


A role for voltage-gated potassium channels in the outgrowth of retinal axons in the developing visual system., McFarlane S., J Neurosci. February 1, 2000; 20 (3): 1020-9.                  


Pax6 induces ectopic eyes in a vertebrate., Chow RL., Development. October 1, 1999; 126 (19): 4213-22.              

???pagination.result.page??? 1 2 ???pagination.result.next???