Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (5836) Expression Attributions Wiki
XB-ANAT-2

Papers associated with ectoderm∨derBy=4 (and dlx3)

Limit to papers also referencing gene:
Show all ectoderm∨derBy=4 papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

In vitro modeling of cranial placode differentiation: Recent advances, challenges, and perspectives., Griffin C., Dev Biol. February 1, 2024; 506 20-30.


Ash2l, an obligatory component of H3K4 methylation complexes, regulates neural crest development., Mohammadparast S., Dev Biol. December 1, 2022; 492 14-24.                                  


Quantitative analysis of transcriptome dynamics provides novel insights into developmental state transitions., Johnson K., BMC Genomics. October 23, 2022; 23 (1): 723.                                  


Temporal transcriptomic profiling reveals dynamic changes in gene expression of Xenopus animal cap upon activin treatment., Satou-Kobayashi Y., Sci Rep. July 15, 2021; 11 (1): 14537.          


The neural border: Induction, specification and maturation of the territory that generates neural crest cells., Pla P., Dev Biol. December 1, 2018; 444 Suppl 1 S36-S46.    


A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis., Maharana SK., BMC Biol. July 16, 2018; 16 (1): 79.                            


Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula., Ding Y., Dev Biol. June 15, 2017; 426 (2): 176-187.                                  


Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing., Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.                    


A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements., Square T., Dev Biol. January 15, 2015; 397 (2): 293-304.                                            


Xenopus Nkx6.3 is a neural plate border specifier required for neural crest development., Zhang Z., PLoS One. December 15, 2014; 9 (12): e115165.            


Early embryonic specification of vertebrate cranial placodes., Schlosser G., Wiley Interdiscip Rev Dev Biol. January 1, 2014; 3 (5): 349-63.


Current perspectives of the signaling pathways directing neural crest induction., Stuhlmiller TJ., Cell Mol Life Sci. November 1, 2012; 69 (22): 3715-37.          


Transcription factors involved in lens development from the preplacodal ectoderm., Ogino H., Dev Biol. March 15, 2012; 363 (2): 333-47.      


Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm., Pieper M., Development. March 1, 2012; 139 (6): 1175-87.                    


ΔNp63 is regulated by BMP4 signaling and is required for early epidermal development in Xenopus., Tríbulo C., Dev Dyn. February 1, 2012; 241 (2): 257-69.            


Combinatorial roles for BMPs and Endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton., Alexander C., Development. December 1, 2011; 138 (23): 5135-46.


Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network., Yan B., Dev Dyn. December 1, 2010; 239 (12): 3467-80.                  


Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis., Klymkowsky MW., Cell Adh Migr. January 1, 2010; 4 (4): 595-608.  


DeltaNp63 antagonizes p53 to regulate mesoderm induction in Xenopus laevis., Barton CE., Dev Biol. May 1, 2009; 329 (1): 130-9.            


Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development., Hayes JM., Dev Biol. December 1, 2007; 312 (1): 115-30.                                          


The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction., Takebayashi-Suzuki K., Mech Dev. January 1, 2007; 124 (11-12): 840-55.    


FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development., Steiner AB., Development. December 1, 2006; 133 (24): 4827-38.                    


Tsukushi controls ectodermal patterning and neural crest specification in Xenopus by direct regulation of BMP4 and X-delta-1 activity., Kuriyama S., Development. January 1, 2006; 133 (1): 75-88.            


Role of crescent in convergent extension movements by modulating Wnt signaling in early Xenopus embryogenesis., Shibata M., Mech Dev. December 1, 2005; 122 (12): 1322-39.                    


SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation., Taylor KM., Dev Cell. November 1, 2005; 9 (5): 593-603.                  


Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration., Suzuki M., Dev Biol. October 1, 2005; 286 (1): 361-75.              


An essential role of Xenopus Foxi1a for ventral specification of the cephalic ectoderm during gastrulation., Matsuo-Takasaki M., Development. September 1, 2005; 132 (17): 3885-94.                      


Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus., Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.                          


Molecular anatomy of placode development in Xenopus laevis., Schlosser G., Dev Biol. July 15, 2004; 271 (2): 439-66.                          


Specification of the otic placode depends on Sox9 function in Xenopus., Saint-Germain N., Development. April 1, 2004; 131 (8): 1755-63.              


Xenopus X-box binding protein 1, a leucine zipper transcription factor, is involved in the BMP signaling pathway., Zhao H., Dev Biol. May 15, 2003; 257 (2): 278-91.          


XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos., Osada S., Development. May 1, 2003; 130 (9): 1783-94.            


Induction of neural crest in Xenopus by transcription factor AP2alpha., Luo T., Proc Natl Acad Sci U S A. January 21, 2003; 100 (2): 532-7.        


Dlx proteins position the neural plate border and determine adjacent cell fates., Woda JM., Development. January 1, 2003; 130 (2): 331-42.      


Transcription factor AP-2 is an essential and direct regulator of epidermal development in Xenopus., Luo T., Dev Biol. May 1, 2002; 245 (1): 136-44.          


Distinct roles for Distal-less genes Dlx3 and Dlx5 in regulating ectodermal development in Xenopus., Luo T., Mol Reprod Dev. November 1, 2001; 60 (3): 331-7.


Differential regulation of Dlx gene expression by a BMP morphogenetic gradient., Luo T., Int J Dev Biol. June 1, 2001; 45 (4): 681-4.      


Regulation and function of Dlx3 in vertebrate development., Beanan MJ., Dev Dyn. August 1, 2000; 218 (4): 545-53.      


Regulation of early expression of Dlx3, a Xenopus anti-neural factor, by beta-catenin signaling., Beanan MJ., Mech Dev. March 1, 2000; 91 (1-2): 227-35.  


Inhibitory patterning of the anterior neural plate in Xenopus by homeodomain factors Dlx3 and Msx1., Feledy JA., Dev Biol. August 15, 1999; 212 (2): 455-64.                


Evidence for non-axial A/P patterning in the nonneural ectoderm of Xenopus and zebrafish pregastrula embryos., Read EM., Int J Dev Biol. September 1, 1998; 42 (6): 763-74.    


Differential expression of a Distal-less homeobox gene Xdll-2 in ectodermal cell lineages., Dirksen ML., Mech Dev. April 1, 1994; 46 (1): 63-70.          


The homeodomain gene Xenopus Distal-less-like-2 (Xdll-2) is regulated by a conserved mechanism in amphibian and mammalian epidermis., Morasso MI., Dev Biol. March 1, 1994; 162 (1): 267-76.


Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals., Papalopulu N., Development. March 1, 1993; 117 (3): 961-75.          

???pagination.result.page??? 1