Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1495) Expression Attributions Wiki
XB-ANAT-20

Papers associated with spinal cord (and tcf3)

Limit to papers also referencing gene:
Show all spinal cord papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome., Adams DS., J Physiol. June 15, 2016; 594 (12): 3245-70.                              


Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates., Yajima H., BMC Biol. May 29, 2014; 12 40.                        


mRNA fluorescence in situ hybridization to determine overlapping gene expression in whole-mount mouse embryos., Neufeld SJ., Dev Dyn. September 1, 2013; 242 (9): 1094-100.    


A novel mouse c-fos intronic promoter that responds to CREB and AP-1 is developmentally regulated in vivo., Coulon V., PLoS One. June 21, 2010; 5 (6): e11235.            


Developmental expression of retinoic acid receptors (RARs)., Dollé P., Nucl Recept Signal. May 12, 2009; 7 e006.            


Expression study of cadherin7 and cadherin20 in the embryonic and adult rat central nervous system., Takahashi M., BMC Dev Biol. June 23, 2008; 8 87.                


Roles of PDGF in animal development., Hoch RV., Development. October 1, 2003; 130 (20): 4769-84.            


Identification of NKL, a novel Gli-Kruppel zinc-finger protein that promotes neuronal differentiation., Lamar E., Development. April 1, 2001; 128 (8): 1335-46.              


Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation., Koyano-Nakagawa N., Development. October 1, 2000; 127 (19): 4203-16.              


XASH genes promote neurogenesis in Xenopus embryos., Ferreiro B., Development. December 1, 1994; 120 (12): 3649-55.          


The mouse homeoprotein mLIM-3 is expressed early in cells derived from the neuroepithelium and persists in adult pituitary., Seidah NG., DNA Cell Biol. December 1, 1994; 13 (12): 1163-80.


XASH-3, a novel Xenopus achaete-scute homolog, provides an early marker of planar neural induction and position along the mediolateral axis of the neural plate., Zimmerman K., Development. September 1, 1993; 119 (1): 221-32.                

???pagination.result.page??? 1