Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (42) Expression Attributions Wiki
XB-ANAT-228

Papers associated with follicle cell

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Historical control histopathology data from amphibian metamorphosis assays and fathead minnow fish short term reproductive assays: A tool for data interpretation., Wolf JC., Aquat Toxicol. February 1, 2024; 267 106811.            


Methylene Blue Inhibits Cromakalim-Activated K+ Currents in Follicle-Enclosed Oocytes., Isaev D., Membranes (Basel). January 18, 2023; 13 (2):         


Sex Determination in Two Species of Anuran Amphibians by Magnetic Resonance Imaging and Ultrasound Techniques., Ruiz-Fernández MJ., Animals (Basel). November 18, 2020; 10 (11):                       


Dissection of the Ovulatory Process Using ex vivo Approaches., Tokmakov AA., Front Cell Dev Biol. January 1, 2020; 8 605379.        


Changes in gastric sodium-iodide symporter (NIS) activity are associated with differences in thyroid gland sensitivity to perchlorate during metamorphosis., Carr JA., Gen Comp Endocrinol. August 1, 2015; 219 16-23.              


Effects of tributyltin on metamorphosis and gonadal differentiation of Xenopus laevis at environmentally relevant concentrations., Shi H., Toxicol Ind Health. May 1, 2014; 30 (4): 297-303.


The roles of maternal Vangl2 and aPKC in Xenopus oocyte and embryo patterning., Cha SW., Development. September 1, 2011; 138 (18): 3989-4000.                  


IGF-1 receptors in Xenopus laevis ovarian follicle cells support the oocyte maturation response., Sadler SE., Biol Reprod. March 1, 2010; 82 (3): 591-8.


Exposure of Xenopus laevis tadpoles to cadmium reveals concentration-dependent bimodal effects on growth and monotonic effects on development and thyroid gland activity., Sharma B., Toxicol Sci. September 1, 2008; 105 (1): 51-8.


Implication of gap junction coupling in amphibian vitellogenin uptake., Mónaco ME., Zygote. May 1, 2007; 15 (2): 149-57.


NF449: a subnanomolar potency antagonist at recombinant rat P2X1 receptors., Braun K., Naunyn Schmiedebergs Arch Pharmacol. September 1, 2001; 364 (3): 285-90.


Localisation of the DmCdc45 DNA replication factor in the mitotic cycle and during chorion gene amplification., Loebel D., Nucleic Acids Res. October 15, 2000; 28 (20): 3897-903.


ATP produces potassium currents via P3 purinoceptor in the follicle cell layer of Xenopus oocytes., Matsuoka T., Neurosci Lett. May 29, 1998; 248 (2): 130-2.


mago nashi mediates the posterior follicle cell-to-oocyte signal to organize axis formation in Drosophila., Newmark PA., Development. August 1, 1997; 124 (16): 3197-207.  


The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules., Gard DL., Dev Biol. April 1, 1997; 184 (1): 95-114.                  


The developing Xenopus oocyte specifies the type of gonadotropin-stimulated steroidogenesis performed by its associated follicle cells., Sretarugsa P., Dev Growth Differ. February 1, 1997; 39 (1): 87-97.


Changes in nuclear localization of An3, a RNA helicase, during oogenesis and embryogenesis in Xenopus laevis., Longo FJ., Mol Reprod Dev. December 1, 1996; 45 (4): 491-502.


A peroxovanadium compound induces Xenopus oocyte maturation: inhibition by a neutralizing anti-insulin receptor antibody., Cummings C., Dev Biol. May 1, 1996; 175 (2): 338-46.


Diadenosine polyphosphate-activated inward and outward currents in follicular oocytes of Xenopus laevis., Pintor J., Life Sci. January 1, 1996; 59 (12): PL179-84.


A novel P1 purinoceptor activates an outward K+ current in follicular oocytes of Xenopus laevis., King BF., J Pharmacol Exp Ther. January 1, 1996; 276 (1): 93-100.


Characteristics of ecto-ATPase of Xenopus oocytes and the inhibitory actions of suramin on ATP breakdown., Ziganshin AU., Pflugers Arch. January 1, 1995; 429 (3): 412-8.


An actin infrastructure is associated with eukaryotic chromosomes: structural and functional significance., Sauman I., Eur J Cell Biol. August 1, 1994; 64 (2): 348-56.


Inhibitory effects of n-alkanols on the hormonal induction of maturation in follicle-enclosed Xenopus oocytes: implications for gap junctional transport of maturation-inducing steroid., Patiño R., Gen Comp Endocrinol. August 1, 1993; 91 (2): 189-98.


U-cadherin in Xenopus oogenesis and oocyte maturation., Müller AH., Development. February 1, 1992; 114 (2): 533-43.                


Distinct distribution of vimentin and cytokeratin in Xenopus oocytes and early embryos., Torpey NP., J Cell Sci. January 1, 1992; 101 ( Pt 1) 151-60.                


A potassium current evoked by growth hormone-releasing hormone in follicular oocytes of Xenopus laevis., Yoshida S., J Physiol. November 1, 1991; 443 651-67.


Xenopus oocyte K+ current. I. FSH and adenosine stimulate follicle cell-dependent currents., Greenfield LJ., Am J Physiol. November 1, 1990; 259 (5 Pt 1): C775-83.


Xenopus oocyte K+ current. III. Phorbol esters and pH regulate current at gap junctions., Greenfield LJ., Am J Physiol. November 1, 1990; 259 (5 Pt 1): C792-800.


The coelomic envelope of Xenopus laevis eggs: a quick-freeze, deep-etch analysis., Larabell CA., Dev Biol. January 1, 1989; 131 (1): 126-35.


Vimentin expression in oocytes, eggs and early embryos of Xenopus laevis., Tang P., Development. June 1, 1988; 103 (2): 279-87.              


Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels., Methfessel C., Pflugers Arch. December 1, 1986; 407 (6): 577-88.


Intercellular junctions between the follicle cells and oocytes of Xenopus laevis., Browne CL., J Exp Zool. April 1, 1984; 230 (1): 105-13.


The ultrastructural organization of gap junctions between follicle cells and the oocyte in Xenopus laevis., van den Hoef MH., Eur J Cell Biol. March 1, 1984; 33 (2): 242-7.


Steroidal and peptidic control mechanisms in membrane of Xenopus laevis oocytes resuming meiotic division., Baulieu EE., J Steroid Biochem. July 1, 1983; 19 (1A): 139-45.


Steroid and peptide control mechanisms in membrane of Xenopus laevis oocytes resuming meiotic division., Baulieu EE., Ciba Found Symp. January 1, 1983; 98 137-58.


Full-grown oocytes from Xenopus laevis resume growth when placed in culture., Wallace RA., Proc Natl Acad Sci U S A. May 1, 1981; 78 (5): 3078-82.


Polyethylene glycol- and lysolecithin-induced cell fusion between follicle cell and very small oocyte in Xenopus laevis., Wakahara M., Exp Cell Res. July 1, 1980; 128 (1): 9-14.


Oocyte-follicle cell gap junctions in Xenopus laevis and the effects of gonadotropin on their permeability., Browne CL., Science. January 12, 1979; 203 (4376): 182-3.


Oogenesis in Xenopus laevis (Daudin). VI. The route of injected tracer transport in the follicle and developing oocyte., Dumont JN., J Exp Zool. May 1, 1978; 204 (2): 193-217.


Translation of Xenopus liver messenger RNA in Xenopus oocytes: vitellogenin synthesis and conversion to yolk platelet proteins., Berridge MV., Cell. June 1, 1976; 8 (2): 283-97.


Defined nutrient medium for the in vitro maintenance of Xenopus laevis oocytes., Eppig JJ., In Vitro. June 1, 1976; 12 (6): 418-27.


Comparison of exogenous energy sources for in vitro maintenance of follicle cell-free Xenopus laevis oocytes., Eppig JJ., In Vitro. March 1, 1976; 12 (3): 173-9.

???pagination.result.page??? 1