Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1723) Expression Attributions Wiki
XB-ANAT-233

Papers associated with cardiac mesoderm (and tbx2)

Limit to papers also referencing gene:
Show all cardiac mesoderm papers
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Inhibition of monocarboxylate transporter by N-cyanosulphonamide S0859., Heidtmann H., Eur J Pharmacol. September 5, 2015; 762 344-9.


Carboxy terminus of GATA4 transcription factor is required for its cardiogenic activity and interaction with CDK4., Gallagher JM., Mech Dev. November 1, 2014; 134 31-41.            


The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling., Jacox L., Cell Rep. July 24, 2014; 8 (2): 596-609.                            


Functional diversity of voltage-sensing phosphatases in two urodele amphibians., Mutua J., Physiol Rep. July 16, 2014; 2 (7):                 


Symmetry breakage in the frog Xenopus: role of Rab11 and the ventral-right blastomere., Tingler M., Genesis. June 1, 2014; 52 (6): 588-99.            


Domain-domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel., Zaydman MA., Elife. March 12, 2014; 3 e03606.                        


Characterization of the insulin-like growth factor binding protein family in Xenopus tropicalis., Haramoto Y., Int J Dev Biol. January 1, 2014; 58 (9): 705-11.                                            


Left-right asymmetry: lessons from Cancún., Burdine RD., Development. November 1, 2013; 140 (22): 4465-70.    


Hydrophobic interactions between the voltage sensor and pore mediate inactivation in Kv11.1 channels., Perry MD., J Gen Physiol. September 1, 2013; 142 (3): 275-88.                    


TBX3 Directs Cell-Fate Decision toward Mesendoderm., Weidgang CE., Stem Cell Reports. August 29, 2013; 1 (3): 248-65.                


sfrp1 promotes cardiomyocyte differentiation in Xenopus via negative-feedback regulation of Wnt signalling., Gibb N., Development. April 1, 2013; 140 (7): 1537-49.                                    


Islet1-expressing cardiac progenitor cells: a comparison across species., Pandur P., Dev Genes Evol. March 1, 2013; 223 (1-2): 117-29.          


Uncoupling VEGFA functions in arteriogenesis and hematopoietic stem cell specification., Leung A., Dev Cell. January 28, 2013; 24 (2): 144-58.                                


Unraveling new roles for serotonin receptor 2B in development: key findings from Xenopus., Ori M., Int J Dev Biol. January 1, 2013; 57 (9-10): 707-14.          


High cell-autonomy of the anterior endomesoderm viewed in blastomere fate shift during regulative development in the isolated right halves of four-cell stage Xenopus embryos., Koga M., Dev Growth Differ. September 1, 2012; 54 (7): 717-29.              


Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/β-catenin-mediated lung specification in Xenopus., Rankin SA, Rankin SA., Development. August 1, 2012; 139 (16): 3010-20.                                                                                


New developments in the second heart field., Zaffran S., Differentiation. July 1, 2012; 84 (1): 17-24.


ATP4a is required for Wnt-dependent Foxj1 expression and leftward flow in Xenopus left-right development., Walentek P., Cell Rep. May 31, 2012; 1 (5): 516-27.                              


Polarity proteins are required for left-right axis orientation and twin-twin instruction., Vandenberg LN., Genesis. March 1, 2012; 50 (3): 219-34.                    


Inhibition of heart formation by lithium is an indirect result of the disruption of tissue organization within the embryo., Martin LK., Dev Growth Differ. February 1, 2012; 54 (2): 153-66.                


Identifying the evolutionary building blocks of the cardiac conduction system., Jensen B., PLoS One. January 1, 2012; 7 (9): e44231.                    


KCNQ1 subdomains involved in KCNE modulation revealed by an invertebrate KCNQ1 orthologue., Nakajo K., J Gen Physiol. November 1, 2011; 138 (5): 521-35.                        


The spatio-temporal expression of ProSAP/shank family members and their interaction partner LAPSER1 during Xenopus laevis development., Gessert S., Dev Dyn. June 1, 2011; 240 (6): 1528-36.                      


Rare mutations in the human Na-K-Cl cotransporter (NKCC2) associated with lower blood pressure exhibit impaired processing and transport function., Monette MY., Am J Physiol Renal Physiol. April 1, 2011; 300 (4): F840-7.


Tissue-specific expression of Sarcoplasmic/Endoplasmic Reticulum Calcium ATPases (ATP2A/SERCA) 1, 2, 3 during Xenopus laevis development., Pegoraro C., Gene Expr Patterns. January 1, 2011; 11 (1-2): 122-8.    


Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs., Borchers A., Genes (Basel). November 18, 2010; 1 (3): 413-26.      


The ATP-sensitive K(+)-channel (K(ATP)) controls early left-right patterning in Xenopus and chick embryos., Aw S., Dev Biol. October 1, 2010; 346 (1): 39-53.        


Serotonin 2B receptor signaling is required for craniofacial morphogenesis and jaw joint formation in Xenopus., Reisoli E., Development. September 1, 2010; 137 (17): 2927-37.                            


MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization., Suzuki M., Development. July 1, 2010; 137 (14): 2329-39.                                                      


Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development., Saharinen P., Genes Dev. May 1, 2010; 24 (9): 875-80.    


The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos., Maczkowiak F., Dev Biol. April 15, 2010; 340 (2): 381-96.                                                    


RNA helicase Ddx39 is expressed in the developing central nervous system, limb, otic vesicle, branchial arches and facial mesenchyme of Xenopus laevis., Wilson JM., Gene Expr Patterns. January 1, 2010; 10 (1): 44-52.          


Creating frog heart as an organ: in vitro-induced heart functions as a circulatory organ in vivo., Kinoshita M., Int J Dev Biol. January 1, 2010; 54 (5): 851-6.    


Characterization of molecular markers to assess cardiac cushions formation in Xenopus., Lee YH, Lee YH., Dev Dyn. December 1, 2009; 238 (12): 3257-65.            


The shroom family proteins play broad roles in the morphogenesis of thickened epithelial sheets., Lee C, Lee C, Lee C., Dev Dyn. June 1, 2009; 238 (6): 1480-91.                            


In vitro organogenesis from undifferentiated cells in Xenopus., Asashima M., Dev Dyn. June 1, 2009; 238 (6): 1309-20.                      


Developmental expression of retinoic acid receptors (RARs)., Dollé P., Nucl Recept Signal. May 12, 2009; 7 e006.            


Loss of REEP4 causes paralysis of the Xenopus embryo., Argasinska J., Int J Dev Biol. January 1, 2009; 53 (1): 37-43.          


KCNQ1 and KCNE1 in the IKs channel complex make state-dependent contacts in their extracellular domains., Xu X., J Gen Physiol. June 1, 2008; 131 (6): 589-603.                    


The functions and possible significance of Kremen as the gatekeeper of Wnt signalling in development and pathology., Nakamura T., J Cell Mol Med. April 1, 2008; 12 (2): 391-408.          


Wnt6 expression in epidermis and epithelial tissues during Xenopus organogenesis., Lavery DL., Dev Dyn. March 1, 2008; 237 (3): 768-79.          


Identification and gene expression of versican during early development of Xenopus., Casini P., Int J Dev Biol. January 1, 2008; 52 (7): 993-8.      


XGRIP2.1 is encoded by a vegetally localizing, maternal mRNA and functions in germ cell development and anteroposterior PGC positioning in Xenopus laevis., Tarbashevich K., Dev Biol. November 15, 2007; 311 (2): 554-65.                      


Expression and promoter analysis of Xenopus DMRT1 and functional characterization of the transactivation property of its protein., Yoshimoto S., Dev Growth Differ. December 1, 2006; 48 (9): 597-603.        


Characterization of myeloid cells derived from the anterior ventral mesoderm in the Xenopus laevis embryo., Tashiro S., Dev Growth Differ. October 1, 2006; 48 (8): 499-512.                    


Reduction of XNkx2-10 expression leads to anterior defects and malformation of the embryonic heart., Allen BG., Mech Dev. October 1, 2006; 123 (10): 719-29.          


Heading in a new direction: implications of the revised fate map for understanding Xenopus laevis development., Lane MC., Dev Biol. August 1, 2006; 296 (1): 12-28.                


Molecular and Functional Differences between Heart mKv1.7 Channel Isoforms., Finol-Urdaneta RK., J Gen Physiol. July 1, 2006; 128 (1): 133-45.            


Developmental expression patterns of Tbx1, Tbx2, Tbx5, and Tbx20 in Xenopus tropicalis., Showell C., Dev Dyn. June 1, 2006; 235 (6): 1623-30.                      


The RNA-binding protein fragile X-related 1 regulates somite formation in Xenopus laevis., Huot ME., Mol Biol Cell. September 1, 2005; 16 (9): 4350-61.                  

???pagination.result.page??? 1 2 3 ???pagination.result.next???