Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1369) Expression Attributions Wiki
XB-ANAT-247

Papers associated with neural plate

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

DEVELOPMENT OF THE BRAIN IN XENOPUS LAEVIS AFTER REMOVAL OF PARTS OF THE NEURAL PLATE., CORNER MA., J Exp Zool. August 1, 1963; 153 301-11.


LOCALIZATION OF CAPACITIES FOR FUNCTIONAL DEVELOPMENT IN THE NEURAL PLATE OF XENOPUS LAEVIS., CORNER M., J Comp Neurol. October 1, 1964; 123 243-55.


Specification of positional information in retinal ganglion cells of Xenopus laevis: intra-ocular control of the time of specification., Hunt RK., Proc Natl Acad Sci U S A. September 1, 1974; 71 (9): 3616-20.


Developmental programming for retinotectal patterns., Hunt RK., Ciba Found Symp. January 1, 1975; 0 (29): 131-59.


The development of the action potential mechanism of amphibian neurons isolated in culture., Spitzer NC., Proc Natl Acad Sci U S A. May 1, 1976; 73 (5): 1641-5.


Pattern formation in early developmental stages of amphibian embryos., Tiedemann H., J Embryol Exp Morphol. June 1, 1976; 35 (3): 437-44.


[Transfer of behavior patterns through transplantation of anlagen of neuro-anatomic structures in amphibian larva. 1. Xenoplastic exchange of medulla anlagen between Xenopus laevis and Hymenochirus boettgeri (Amphibia, Anura)]., Rössler E., Z Tierpsychol. July 1, 1976; 41 (3): 244-65.


[Transfer of behavior patterns through transplantation of systems of neuroanatomic structures in amphibian larvae. II. Xenoplastic transplantation of hind brain systems between Xenopus laevis (Daud.) as well as Hymenochirus boettgeri (Torn.) and Triturus vulgaris]., Rössler E., Z Tierpsychol. January 1, 1978; 46 (1): 1-13.


Photoreceptor outer segment development: light and dark regulate the rate of membrane addition and loss., Hollyfield JG., Invest Ophthalmol Vis Sci. February 1, 1979; 18 (2): 117-32.


The function of the sodium pump during differentiation of amphibian embryonic neurones., Messenger EA., J Physiol. July 1, 1979; 292 85-105.


Rohon-beard cells and other large neurons in Xenopus embryos originate during gastrulation., Lamborghini JE., J Comp Neurol. January 15, 1980; 189 (2): 323-33.


Specification of retinotectal connexions during development of the toad Xenopus laevis., Sharma SC., J Embryol Exp Morphol. February 1, 1980; 55 77-92.


Electrical excitability of outgrowing neurites of embryonic neurones in cultures of dissociated neural plate of Xenopus laevis., Willard AL., J Physiol. April 1, 1980; 301 115-28.


An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians., Youn BW., J Embryol Exp Morphol. October 1, 1980; 59 223-47.                        


Substrate pathways demonstrated by transplanted Mauthner axons., Katz MJ., J Comp Neurol. February 1, 1981; 195 (4): 627-41.


Clonal organization of the central nervous system of the frog. II. Clones stemming from individual blastomeres of the 32- and 64-cell stages., Jacobson M., J Neurosci. March 1, 1981; 1 (3): 271-84.


Rohon-Beard neuron origin from blastomeres of the 16-cell frog embryo., Jacobson M., J Neurosci. August 1, 1981; 1 (8): 918-22.


The movement of the prospective eye vesicles from the neural plate into the neural fold in Ambystoma mexicanum and Xenopus laevis., Brun RB., Dev Biol. November 1, 1981; 88 (1): 192-9.


Neural plate morphogenesis and axial stretching in "notochord-defective" Xenopus laevis embryos., Malacinski GM., Dev Biol. December 1, 1981; 88 (2): 352-7.


Intracellular sodium and the differentiation of amphibian embryonic neurones., Breckenridge LJ., J Physiol. November 1, 1982; 332 393-413.


The development of connections between the isthmic nucleus and the tectum in Xenopus and Limnodynastes tadpoles., Dann JF., Neurosci Lett. November 30, 1982; 33 (2): 107-13.


The developmental effect of calcitonin on the interocular distance in early Xenopus embryos., Burgess AM., J Anat. December 1, 1982; 135 (Pt 4): 745-51.


Clonal organization of the central nervous system of the frog. III. Clones stemming from individual blastomeres of the 128-, 256-, and 512-cell stages., Jacobson M., J Neurosci. May 1, 1983; 3 (5): 1019-38.


Craniofacial malformation in Xenopus laevis tadpoles caused by the exposure of early embryos to ethanol., Nakatsuji N., Teratology. October 1, 1983; 28 (2): 299-305.


Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hemopoietic cells in Xenopus laevis., Kau CL., J Immunol. November 1, 1983; 131 (5): 2262-6.


A rapid increase in acetylcholinesterase mRNA during ascidian embryogenesis as demonstrated by microinjection into Xenopus laevis oocytes., Perry HE., Cell Differ. November 1, 1983; 13 (3): 233-8.


Axon number in oculomotor nerves in Xenopus: removal of one eye primordium affects both sides., Schönenberger N., Neurosci Lett. November 11, 1983; 41 (3): 239-45.


Regional distribution of polyadenylated mRNA in Xenopus laevis embryos., De Bernardi F., Exp Cell Biol. January 1, 1984; 52 (5): 333-8.


Self-generated electrical currents through Xenopus neurulae., Robinson KR., J Physiol. July 1, 1984; 352 339-52.


A flow cytometric analysis of the embryonic origin of lymphocytes in diploid/triploid chimeric Xenopus laevis., Flajnik MF., Dev Biol. July 1, 1984; 104 (1): 247-54.


CNS effects of mechanically produced spina bifida., Katz MJ., Dev Med Child Neurol. October 1, 1984; 26 (5): 617-31.


The effect of calcitonin on the prechordal mesoderm, neural plate and neural crest of Xenopus embryos., Burgess AM., J Anat. January 1, 1985; 140 ( Pt 1) 49-55.


Alteration of the anterior-posterior embryonic axis: the pattern of gastrulation in macrocephalic frog embryos., Kao KR., Dev Biol. January 1, 1985; 107 (1): 239-51.


Regulation in the neural plate of Xenopus laevis demonstrated by genetic markers., Szaro B., J Exp Zool. April 1, 1985; 234 (1): 117-29.


Peanut lectin receptors in the early amphibian embryo: regional markers for the study of embryonic induction., Slack JM., Cell. May 1, 1985; 41 (1): 237-47.


Development of a high-affinity GABA uptake system in embryonic amphibian spinal neurons., Lamborghini JE., Dev Biol. November 1, 1985; 112 (1): 167-76.


Regional specificity of glycoconjugates in Xenopus and axolotl embryos., Slack JM., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 137-53.      


Tissue interactions during axial structure pattern formation in amphibia., Malacinski GM., Scan Electron Microsc. January 1, 1986; (Pt 2): 307-18.


Development of the ectoderm in Xenopus: tissue specification and the role of cell association and division., Jones EA., Cell. January 31, 1986; 44 (2): 345-55.                


The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis., Godsave SF., J Embryol Exp Morphol. September 1, 1986; 97 201-23.              


Neural cell adhesion molecule expression in Xenopus embryos., Balak K., Dev Biol. February 1, 1987; 119 (2): 540-50.              


Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction., Kintner CR., Development. March 1, 1987; 99 (3): 311-25.                  


Cell-type-specific expression of epidermal cytokeratin genes during gastrulation of Xenopus laevis., Jamrich M., Genes Dev. April 1, 1987; 1 (2): 124-32.                


Expression sequences and distribution of two primary cell adhesion molecules during embryonic development of Xenopus laevis., Levi G., J Cell Biol. November 1, 1987; 105 (5): 2359-72.                  


Inductive interactions in the spatial and temporal restriction of lens-forming potential in embryonic ectoderm of Xenopus laevis., Henry JJ., Dev Biol. November 1, 1987; 124 (1): 200-14.


The effects of tectal lesion on the survival of isthmic neurones in Xenopus., Straznicky C., Development. December 1, 1987; 101 (4): 869-76.


The ultrastructural organization of the isthmic nucleus in Xenopus., McCart R., Anat Embryol (Berl). January 1, 1988; 177 (4): 325-30.


Endogenous lectin secretion into the extracellular matrix of early embryos of Xenopus laevis., Outenreath RL., Dev Biol. January 1, 1988; 125 (1): 187-94.


Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos., Harvey RP., Cell. June 3, 1988; 53 (5): 687-97.              


The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. II. Experimental dissociation by lateral compression of the egg., Black SD., Dev Biol. July 1, 1988; 128 (1): 65-71.

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???