Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (320) Expression Attributions Wiki
XB-ANAT-257

Papers associated with paraxial mesoderm∨derBy=4 (and myh4)

Limit to papers also referencing gene:
Show all paraxial mesoderm∨derBy=4 papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Xenopus SOX5 enhances myogenic transcription indirectly through transrepression., Della Gaspera B., Dev Biol. October 15, 2018; 442 (2): 262-275.                    


The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform., Dichmann DS., Cell Rep. February 3, 2015; 10 (4): 527-36.                    


Myogenic waves and myogenic programs during Xenopus embryonic myogenesis., Della Gaspera B., Dev Dyn. May 1, 2012; 241 (5): 995-1007.                                    


Mef2d acts upstream of muscle identity genes and couples lateral myogenesis to dermomyotome formation in Xenopus laevis., Della Gaspera B., PLoS One. January 1, 2012; 7 (12): e52359.                  


Normal levels of p27 are necessary for somite segmentation and determining pronephric organ size., Naylor RW., Organogenesis. October 1, 2009; 5 (4): 201-10.                                          


Myoskeletin, a factor related to Myocardin, is expressed in somites and required for hypaxial muscle formation in Xenopus., Zhao H., Int J Dev Biol. January 1, 2007; 51 (4): 315-20.              


p38 MAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development., Keren A., Dev Biol. December 1, 2005; 288 (1): 73-86.              


An atlas of differential gene expression during early Xenopus embryogenesis., Pollet N., Mech Dev. March 1, 2005; 122 (3): 365-439.                                                                                                                                                        


Inhibition of the cell cycle is required for convergent extension of the paraxial mesoderm during Xenopus neurulation., Leise WF., Development. April 1, 2004; 131 (8): 1703-15.              


Xenopus muscle development: from primary to secondary myogenesis., Chanoine C., Dev Dyn. January 1, 2003; 226 (1): 12-23.  


A single cdk inhibitor, p27Xic1, functions beyond cell cycle regulation to promote muscle differentiation in Xenopus., Vernon AE., Development. January 1, 2003; 130 (1): 71-83.            


Xenopus bagpipe-related gene, koza, may play a role in regulation of cell proliferation., Newman CS., Dev Dyn. December 1, 2002; 225 (4): 571-80.    

???pagination.result.page??? 1