Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (927) Expression Attributions Wiki
XB-ANAT-279

Papers associated with vegetal yolk mass

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Time-lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrulation in Xenopus laevis., Keller RE., J Morphol. August 1, 1978; 157 (2): 223-247.


An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians., Youn BW., J Embryol Exp Morphol. October 1, 1980; 59 223-47.                        


Conditioning of a culture substratum by the ectodermal layer promotes attachment and oriented locomotion by amphibian gastrula mesodermal cells., Nakatsuji N., J Cell Sci. January 1, 1983; 59 43-60.


Effects of inducers on inner and outer gastrula ectoderm layers of Xenopus laevis., Asashima M., Differentiation. January 1, 1983; 23 (3): 206-12.


Comparative study of extracellular fibrils on the ectodermal layer in gastrulae of five amphibian species., Nakatsuji N., J Cell Sci. January 1, 1983; 59 61-70.


Further analysis of the effect of ultra-violet irradiation on the formation of the germ line in Xenopus laevis., Thomas V., J Embryol Exp Morphol. August 1, 1983; 76 67-81.


Axis determination in eggs of Xenopus laevis: a critical period before first cleavage, identified by the common effects of cold, pressure and ultraviolet irradiation., Scharf SR., Dev Biol. September 1, 1983; 99 (1): 75-87.            


Appearance and Distribution of RNA-Rich Cytoplasms in the Embryo of Xenopus laevis during Early Development: (germinal vesicle material/dorsal yolk-free cytoplasm/blastulation/mesoderm formation/Xenopus laevis)., Imoh H., Dev Growth Differ. January 1, 1984; 26 (2): 167-176.


Early cellular interactions promote embryonic axis formation in Xenopus laevis., Gimlich RL., Dev Biol. July 1, 1984; 104 (1): 117-30.


The function and mechanism of convergent extension during gastrulation of Xenopus laevis., Keller RE., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 185-209.


The effect of egg rotation on the differentiation of primordial germ cells in Xenopus laevis., Cleine JH., J Embryol Exp Morphol. December 1, 1985; 90 79-99.


[Movements of cellular material of the dorsal wall in clawed-toad embryos during gastrulation and neurulation]., Petrov KV., Ontogenez. January 1, 1986; 17 (1): 78-83.


Induction of neural cell adhesion molecule (NCAM) in Xenopus embryos., Jacobson M., Dev Biol. August 1, 1986; 116 (2): 524-31.            


The direction of cleavage waves and the regional variation in the duration of cleavage cycles on the dorsal side of the Xenopus laevis blastula., Boterenbrood EC., Rouxs Arch Dev Biol. October 1, 1986; 195 (8): 484-488.


Modification of Dorsal-Ventral Polarity in Xenopus laevis Embryos Following Withdrawal of Egg Contents before First Cleavage: (Dorsal-ventral Polarity/Xenopus laevis/Cytoplasmic exudation/Pricking)., Wakahara M., Dev Growth Differ. November 1, 1986; 28 (6): 543-554.


Prospective Neural Areas and Their Morphogenetic Movements during Neural Plate Formation of Xenopus Embryos. I. Development of Vegetal Half Embryos and Chimera Embryos: (developmental fates/cell marker, quinacrine/Xenopus embryo)., Suzuki AS., Dev Growth Differ. November 1, 1986; 28 (6): 519-529.


Presumptive mesoderm cells from Xenopus laevis gastrulae attach to and migrate on substrata coated with fibronectin or laminin., Nakatsuji N., J Cell Sci. December 1, 1986; 86 109-18.


Cell behaviour during active cell rearrangement: evidence and speculations., Keller R., J Cell Sci Suppl. January 1, 1987; 8 369-93.


The midblastula cell cycle transition and the character of mesoderm in u.v.-induced nonaxial Xenopus development., Cooke J., Development. February 1, 1987; 99 (2): 197-210.              


Dynamics of the control of body pattern in the development of Xenopus laevis. IV. Timing and pattern in the development of twinned bodies after reorientation of eggs in gravity., Cooke J., Development. March 1, 1987; 99 (3): 417-27.


Binding of anti-fibronectin to early amphibian ectoderm does not result in inhibition of neural induction under in vitro conditions., Grunz H., Rouxs Arch Dev Biol. April 1, 1987; 196 (4): 203-209.


Localization of Xenopus homoeo-box gene transcripts during embryogenesis and in the adult nervous system., Carrasco AE., Dev Biol. May 1, 1987; 121 (1): 69-81.              


Expression sequences and distribution of two primary cell adhesion molecules during embryonic development of Xenopus laevis., Levi G., J Cell Biol. November 1, 1987; 105 (5): 2359-72.                  


The organization of mesodermal pattern in Xenopus laevis: experiments using a Xenopus mesoderm-inducing factor., Cooke J., Development. December 1, 1987; 101 (4): 893-908.            


The restrictive effect of early exposure to lithium upon body pattern in Xenopus development, studied by quantitative anatomy and immunofluorescence., Cooke J., Development. January 1, 1988; 102 (1): 85-99.          


Endogenous lectin secretion into the extracellular matrix of early embryos of Xenopus laevis., Outenreath RL., Dev Biol. January 1, 1988; 125 (1): 187-94.


The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos., Kao KR., Dev Biol. May 1, 1988; 127 (1): 64-77.                      


Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis., Keller R., Development. May 1, 1988; 103 (1): 193-209.


The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. I. Independence in undisturbed embryos., Danilchik MV., Dev Biol. July 1, 1988; 128 (1): 58-64.


Prospective Neural Areas and their Morphogenetic Movements during Neural Plate Formation in the Xenopus Embryo. II. Disposition of Transplanted Ectoderm Pieces of X. borealis Animal Cap in Prospective Neural Areas of Albino X. laevis gastrulae.: (developmental fate/neural plate area/Xenopus embryo/chimera/quinacrine)., Suzuki AS., Dev Growth Differ. August 1, 1988; 30 (4): 391-400.


Accumulation and decay of DG42 gene products follow a gradient pattern during Xenopus embryogenesis., Rosa F., Dev Biol. September 1, 1988; 129 (1): 114-23.            


Localization of c-myc expression during oogenesis and embryonic development in Xenopus laevis., Hourdry J., Development. December 1, 1988; 104 (4): 631-41.          


Signals from the dorsal blastopore lip region during gastrulation bias the ectoderm toward a nonepidermal pathway of differentiation in Xenopus laevis., Savage R., Dev Biol. May 1, 1989; 133 (1): 157-68.


Lithium changes the ectodermal fate of individual frog blastomeres because it causes ectopic neural plate formation., Klein SL., Development. July 1, 1989; 106 (3): 599-610.


Experimental reversal of the normal dorsal-ventral timing of blastopore formation does not reverse axis polarity in Xenopus laevis embryos., Black SD., Dev Biol. August 1, 1989; 134 (2): 376-81.


The role of the dorsal lip in the induction of heart mesoderm in Xenopus laevis., Sater AK., Development. March 1, 1990; 108 (3): 461-70.


Fibronectin-rich fibrillar extracellular matrix controls cell migration during amphibian gastrulation., Boucaut JC., Int J Dev Biol. March 1, 1990; 34 (1): 139-47.              


The Xenopus XIHbox 6 homeo protein, a marker of posterior neural induction, is expressed in proliferating neurons., Wright CV., Development. May 1, 1990; 109 (1): 225-34.                


Hensen's node, but not other biological signallers, can induce supernumerary digits in the developing chick limb bud., Stocker KM., Rouxs Arch Dev Biol. May 1, 1990; 198 (7): 371-381.


Characterization of a maternal type VI collagen in Xenopus embryos suggests a role for collagen in gastrulation., Otte AP., J Cell Biol. July 1, 1990; 111 (1): 271-8.            


Localization of specific mRNAs in Xenopus embryos by whole-mount in situ hybridization., Hemmati-Brivanlou A., Development. October 1, 1990; 110 (2): 325-30.  


[Concanavalin-binding proteins and cytokeratins in different tissues of the early amphibian gastrula (Rana temporaria, Xenopus laevis)]., Simirskiĭ VN., Ontogenez. January 1, 1991; 22 (3): 245-56.


Neural induction., Phillips CR., Methods Cell Biol. January 1, 1991; 36 329-46.


Differential expression of two cadherins in Xenopus laevis., Angres B., Development. March 1, 1991; 111 (3): 829-44.                    


Xwnt-8, a Xenopus Wnt-1/int-1-related gene responsive to mesoderm-inducing growth factors, may play a role in ventral mesodermal patterning during embryogenesis., Christian JL., Development. April 1, 1991; 111 (4): 1045-55.    


Patterns of microtubule polymerization relating to cortical rotation in Xenopus laevis eggs., Houliston E., Development. May 1, 1991; 112 (1): 107-17.              


Organizer-specific homeobox genes in Xenopus laevis embryos., Blumberg B., Science. July 12, 1991; 253 (5016): 194-6.


Distribution and expression of two interactive extracellular matrix proteins, cytotactin and cytotactin-binding proteoglycan, during development of Xenopus laevis. I. Embryonic development., Williamson DA., J Morphol. August 1, 1991; 209 (2): 189-202.


Subcortical Rotation and Specification of the Dorsoventral Axis in Newt Eggs: (newt eggs/subcortical rotation/dorsoventral axis)., Fujisue M., Dev Growth Differ. August 1, 1991; 33 (4): 341-351.


Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction., Smith JC., Cell. October 4, 1991; 67 (1): 79-87.

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???