Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2419) Expression Attributions Wiki
XB-ANAT-28

Papers associated with epidermis (and xt6l)

Limit to papers also referencing gene:
Show all epidermis papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens., Varga JFA., Front Immunol. September 12, 2018; 9 3128.  


Physicochemical and biological characterizations of Pxt peptides from amphibian (Xenopus tropicalis) skin., Shigeri Y., J Biochem. June 1, 2016; 159 (6): 619-29.


Host-defense and trefoil factor family peptides in skin secretions of the Mawa clawed frog Xenopus boumbaensis (Pipidae)., Conlon JM., Peptides. October 1, 2015; 72 44-9.


Evidence from peptidomic analysis of skin secretions that allopatric populations of Xenopus gilli (Anura:Pipidae) constitute distinct lineages., Conlon JM., Peptides. January 1, 2015; 63 118-25.


Host-defense peptides from skin secretions of Fraser's clawed frog Xenopus fraseri (Pipidae): Further insight into the evolutionary history of the Xenopodinae., Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. December 1, 2014; 12 45-52.


Antimicrobial and immunomodulatory properties of PGLa-AM1, CPF-AM1, and magainin-AM1: Potent activity against oral pathogens., McLean DT., Regul Pept. November 1, 2014; .


Host-defense peptides from skin secretions of the octoploid frogs Xenopus vestitus and Xenopus wittei (Pipidae): insights into evolutionary relationships., Mechkarska M., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2014; 11 20-8.


Host-defense peptides with therapeutic potential from skin secretions of frogs from the family pipidae., Conlon JM., Pharmaceuticals (Basel). January 15, 2014; 7 (1): 58-77.          


Peptidomic analysis of skin secretions provides insight into the taxonomic status of the African clawed frogs Xenopus victorianus and Xenopus laevis sudanensis (Pipidae)., King JD., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2013; 8 (3): 250-4.


A comparison of host-defense peptides in skin secretions of female Xenopus laevis × Xenopus borealis and X. borealis × X. laevis F1 hybrids., Mechkarska M., Peptides. July 1, 2013; 45 1-8.


Caerulein precursor fragment (CPF) peptides from the skin secretions of Xenopus laevis and Silurana epitropicalis are potent insulin-releasing agents., Srinivasan D., Biochimie. February 1, 2013; 95 (2): 429-35.


Frog skin peptides (tigerinin-1R, magainin-AM1, -AM2, CPF-AM1, and PGla-AM1) stimulate secretion of glucagon-like peptide 1 (GLP-1) by GLUTag cells., Ojo OO., Biochem Biophys Res Commun. February 1, 2013; 431 (1): 14-8.    


Host-defense peptides in skin secretions of the tetraploid frog Silurana epitropicalis with potent activity against methicillin-resistant Staphylococcus aureus (MRSA)., Conlon JM., Peptides. September 1, 2012; 37 (1): 113-9.


Host-defense peptides in skin secretions of African clawed frogs (Xenopodinae, Pipidae)., Conlon JM., Gen Comp Endocrinol. May 1, 2012; 176 (3): 513-8.    


Host-defense peptides from skin secretions of the tetraploid frogs Xenopus petersii and Xenopus pygmaeus, and the octoploid frog Xenopus lenduensis (Pipidae)., King JD., Peptides. January 1, 2012; 33 (1): 35-43.


Peptidomic analysis of skin secretions demonstrates that the allopatric populations of Xenopus muelleri (Pipidae) are not conspecific., Mechkarska M., Peptides. July 1, 2011; 32 (7): 1502-8.


Caerulein-and xenopsin-related peptides with insulin-releasing activities from skin secretions of the clawed frogs, Xenopus borealis and Xenopus amieti (Pipidae)., Zahid OK., Gen Comp Endocrinol. June 1, 2011; 172 (2): 314-20.


Genome duplications within the Xenopodinae do not increase the multiplicity of antimicrobial peptides in Silurana paratropicalis and Xenopus andrei skin secretions., Mechkarska M., Comp Biochem Physiol Part D Genomics Proteomics. June 1, 2011; 6 (2): 206-12.


Purification and properties of antimicrobial peptides from skin secretions of the Eritrea clawed frog Xenopus clivii (Pipidae)., Conlon JM., Comp Biochem Physiol C Toxicol Pharmacol. April 1, 2011; 153 (3): 350-4.


Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog Xenopus borealis (Pipidae)., Mechkarska M., Comp Biochem Physiol C Toxicol Pharmacol. November 1, 2010; 152 (4): 467-72.


Orthologs of magainin, PGLa, procaerulein-derived, and proxenopsin-derived peptides from skin secretions of the octoploid frog Xenopus amieti (Pipidae)., Conlon JM., Peptides. June 1, 2010; 31 (6): 989-94.


Identical skin toxins by convergent molecular adaptation in frogs., Roelants K., Curr Biol. January 26, 2010; 20 (2): 125-30.    


Molecular features of thyroid hormone-regulated skin remodeling in Xenopus laevis during metamorphosis., Suzuki K., Dev Growth Differ. May 1, 2009; 51 (4): 411-27.                


In vitro development of Xenopus skin glands producing 5-hydroxytryptamine and caerulein., Seki T., Experientia. November 15, 1995; 51 (11): 1040-4.


Structure of two cDNAs encoding cholecystokinin precursors from the brain of Xenopus laevis., Wechselberger C., J Mol Endocrinol. June 1, 1995; 14 (3): 357-64.


Purification of antimicrobial peptides from an extract of the skin of Xenopus laevis using heparin-affinity HPLC: characterization by ion-spray mass spectrometry., James S., Anal Biochem. February 15, 1994; 217 (1): 84-90.


Antimicrobial peptides in the stomach of Xenopus laevis., Moore KS., J Biol Chem. October 15, 1991; 266 (29): 19851-7.              


Development of Xenopus laevis skin glands producing 5-hydroxytryptamine and caerulein., Seki T., Cell Tissue Res. December 1, 1989; 258 (3): 483-9.


Xenopus laevis skin Arg-Xaa-Val-Arg-Gly-endoprotease. A highly specific protease cleaving after a single arginine of a consensus sequence of peptide hormone precursors., Kuks PF., J Biol Chem. September 5, 1989; 264 (25): 14609-12.


Identification of highly acidic peptides from processing of the skin prepropeptides of Xenopus laevis., Nutkins JC., Eur J Biochem. April 15, 1989; 181 (1): 97-102.


The genes for the frog skin peptides GLa, xenopsin, levitide and caerulein contain a homologous export exon encoding a signal sequence and part of an amphiphilic peptide., Kuchler K., Eur J Biochem. February 1, 1989; 179 (2): 281-5.


Relationship of promagainin to three other prohormones from the skin of Xenopus laevis: a different perspective., Hunt LT., FEBS Lett. June 20, 1988; 233 (2): 282-8.


Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones., Giovannini MG., Biochem J. April 1, 1987; 243 (1): 113-20.


Skin peptides in Xenopus laevis: morphological requirements for precursor processing in developing and regenerating granular skin glands., Flucher BE., J Cell Biol. December 1, 1986; 103 (6 Pt 1): 2299-309.                


Isolation of a dipeptidyl aminopeptidase, a putative processing enzyme, from skin secretion of Xenopus laevis., Mollay C., Eur J Biochem. October 1, 1986; 160 (1): 31-5.


Novel peptide fragments originating from PGLa and the caerulein and xenopsin precursors from Xenopus laevis., Gibson BW., J Biol Chem. April 25, 1986; 261 (12): 5341-9.


Sequence of preprocaerulein cDNAs cloned from skin of Xenopus laevis. A small family of precursors containing one, three, or four copies of the final product., Richter K., J Biol Chem. March 15, 1986; 261 (8): 3676-80.


A mass spectrometric method for the identification of novel peptides in Xenopus laevis skin secretions., Gibson BW., J Nat Prod. January 1, 1986; 49 (1): 26-34.


Complete nucleotide sequence of mRNA for caerulein precursor from Xenopus skin: the mRNA contains an unusual repetitive structure., Wakabayashi T., Nucleic Acids Res. March 25, 1985; 13 (6): 1817-28.


Biosynthesis of peptides in the skin of Xenopus laevis: isolation of novel peptides predicted from the sequence of cloned cDNAs., Richter K., Peptides. January 1, 1985; 6 Suppl 3 17-21.


A mass spectrometric assay for novel peptides: application to Xenopus laevis skin secretions., Gibson BW., Peptides. January 1, 1985; 6 Suppl 3 23-7.


An unusual repetitive structure of caerulein mRNA from the skin of Xenopus laevis., Wakabayashi T., Gene. November 1, 1984; 31 (1-3): 295-9.


Is caerulein amphibian CCK?, Dimaline R., Peptides. January 1, 1983; 4 (4): 457-62.


Biosynthesis of caerulein in the skin of Xenopus laevis: partial sequences of precursors as deduced from cDNA clones., Hoffmann W., EMBO J. January 1, 1983; 2 (1): 111-4.


Presence of caerulein in extracts of the skin of Leptodactylus pentadactylus labyrinthicus and of Xenopus laevis., Anastasi A., Br J Pharmacol. January 1, 1970; 38 (1): 221-8.

???pagination.result.page??? 1