Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (338) Attributions Wiki
XB-STAGE-29

Papers associated with NF stage 17

Limit to papers also referencing gene:
Results 1 - 50 of 338 results

Page(s): 1 2 3 4 5 6 7 Next

Sort Newest To Oldest Sort Oldest To Newest

Expression profile of rrbp1 genes during embryonic development and in adult tissues of Xenopus laevis., Liu GH, Mao CZ, Wu HY, Zhou DC, Xia JB, Kim SK, Cai DQ, Zhao H, Qi XF., Gene Expr Patterns. January 1, 2017; 23-24 1-6.                      


Xenopus, an ideal model organism to study laterality in conjoined twins., Tisler M, Schweickert A, Blum M., Genesis. January 1, 2017; 55 (1-2):         


What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in Xenopus to study cilia and mucociliary epithelia., Walentek P, Quigley IK., Genesis. January 1, 2017; 55 (1-2):       


Prickle3 synergizes with Wtip to regulate basal body organization and cilia growth., Chu CW, Ossipova O, Ioannou A, Sokol SY., Sci Rep. April 11, 2016; 6 24104.                            


E-cadherin is required for cranial neural crest migration in Xenopus laevis., Huang C, Kratzer MC, Wedlich D, Kashef J., Dev Biol. March 15, 2016; 411 (2): 159-171.                        


Molecular model for force production and transmission during vertebrate gastrulation., Pfister K, Shook DR, Chang C, Keller R, Skoglund P., Development. February 15, 2016; 143 (4): 715-27.              


Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin., Gouignard N, Maccarana M, Strate I, von Stedingk K, Malmström A, Pera EM., Dis Model Mech. January 1, 2016; 9 (6): 607-20.                      


Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development., Tadjuidje E, Kofron M, Mir A, Wylie C, Heasman J, Cha SW., Open Biol. January 1, 2016; 6 (8):             


Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development., Pfirrmann T, Jandt E, Ranft S, Lokapally A, Neuhaus H, Perron M, Hollemann T., Proc Natl Acad Sci U S A. January 1, 2016; 113 (36): 10103-8.                    


Hepatocystin is Essential for TRPM7 Function During Early Embryogenesis., Overton JD, Komiya Y, Mezzacappa C, Nama K, Cai N, Lou L, Fedeles SV, Habas R, Runnels LW., Sci Rep. December 16, 2015; 5 18395.                        


GATA2 regulates Wnt signaling to promote primitive red blood cell fate., Mimoto MS, Kwon S, Green YS, Goldman D, Christian JL., Dev Biol. November 1, 2015; 407 (1): 1-11.                          


The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway., Luehders K, Sasai N, Davaapil H, Kurosawa-Yoshida M, Hiura H, Brah T, Ohnuma S., Development. October 1, 2015; 142 (19): 3351-61.                              


Histone H3 lysine 9 trimethylation is required for suppressing the expression of an embryonically activated retrotransposon in Xenopus laevis., Herberg S, Simeone A, Oikawa M, Jullien J, Bradshaw CR, Teperek M, Gurdon J, Miyamoto K., Sci Rep. September 21, 2015; 5 14236.        


The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling., Wang C, Kam RK, Shi W, Xia Y, Chen X, Cao Y, Sun J, Du Y, Lu G, Chen Z, Chan WY, Chan SO, Deng Y, Zhao H., J Biol Chem. September 4, 2015; 290 (36): 21925-38.                  


Paraxis is required for somite morphogenesis and differentiation in Xenopus laevis., Sánchez RS, Sánchez SS., Dev Dyn. August 1, 2015; 244 (8): 973-87.                              


Functional analysis of Hairy genes in Xenopus neural crest initial specification and cell migration., Vega-López GA, Bonano M, Tríbulo C, Fernández JP, Agüero TH, Aybar MJ, Aybar MJ., Dev Dyn. August 1, 2015; 244 (8): 988-1013.                            


Small C-terminal Domain Phosphatase 3 Dephosphorylates the Linker Sites of Receptor-regulated Smads (R-Smads) to Ensure Transforming Growth Factor β (TGFβ)-mediated Germ Layer Induction in Xenopus Embryos., Sun G, Hu Z, Min Z, Yan X, Guan Z, Su H, Fu Y, Ma X, Chen YG, Zhang MQ, Tao Q, Wu W., J Biol Chem. July 10, 2015; 290 (28): 17239-49.                  


Multi-site phosphorylation regulates NeuroD4 activity during primary neurogenesis: a conserved mechanism amongst proneural proteins., Hardwick LJ, Philpott A., Neural Dev. June 18, 2015; 10 15.                  


TGF-β Signaling Regulates the Differentiation of Motile Cilia., Tözser J, Earwood R, Kato A, Brown J, Tanaka K, Didier R, Megraw TL, Blum M, Kato Y., Cell Rep. May 19, 2015; 11 (7): 1000-7.                


Ascl1 phospho-status regulates neuronal differentiation in a Xenopus developmental model of neuroblastoma., Wylie LA, Hardwick LJ, Papkovskaia TD, Thiele CJ, Philpott A., Dis Model Mech. May 1, 2015; 8 (5): 429-41.                


Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation., Zhang X, Cheong SM, Amado NG, Reis AH, MacDonald BT, Zebisch M, Jones EY, Abreu JG, He X., Dev Cell. March 23, 2015; 32 (6): 719-30.                                  


The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation., Acosta H, Iliev D, Grahn TH, Gouignard N, Maccarana M, Griesbach J, Herzmann S, Sagha M, Climent M, Pera EM., Development. March 15, 2015; 142 (6): 1146-58.                                    


Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway., Vitorino M, Silva AC, Inácio JM, Ramalho JS, Gur M, Fainsod A, Steinbeisser H, Belo JA., PLoS One. January 1, 2015; 10 (8): e0135504.                                  


A PTK7/Ror2 Co-Receptor Complex Affects Xenopus Neural Crest Migration., Podleschny M, Grund A, Berger H, Rollwitz E, Borchers A., PLoS One. January 1, 2015; 10 (12): e0145169.              


Early stages of induction of anterior head ectodermal properties in Xenopus embryos are mediated by transcriptional cofactor ldb1., Plautz CZ, Zirkle BE, Deshotel MJ, Grainger RM., Dev Dyn. December 1, 2014; 243 (12): 1606-18.              


Cell-autonomous signal transduction in the Xenopus egg Wnt/β-catenin pathway., Motomura E, Narita T, Nasu Y, Kato H, Sedohara A, Nishimatsu S, Sakai M., Dev Growth Differ. December 1, 2014; 56 (9): 640-52.                                


Fezf2 promotes neuronal differentiation through localised activation of Wnt/β-catenin signalling during forebrain development., Zhang S, Li J, Lea R, Vleminckx K, Vleminckx K, Amaya E., Development. December 1, 2014; 141 (24): 4794-805.                            


Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm., Nordin K, LaBonne C., Dev Cell. November 10, 2014; 31 (3): 374-382.                              


Symmetry breakage in the vertebrate embryo: when does it happen and how does it work?, Blum M, Schweickert A, Vick P, Wright CV, Danilchik MV., Dev Biol. September 1, 2014; 393 (1): 109-23.          


Sirtuin inhibitor Ex-527 causes neural tube defects, ventral edema formations, and gastrointestinal malformations in Xenopus laevis embryos., Ohata Y, Matsukawa S, Moriyama Y, Michiue T, Morimoto K, Sato Y, Kuroda H., Dev Growth Differ. August 1, 2014; 56 (6): 460-8.          


Role of Rab11 in planar cell polarity and apical constriction during vertebrate neural tube closure., Ossipova O, Kim K, Lake BB, Itoh K, Ioannou A, Sokol SY., Nat Commun. July 8, 2014; 5 3734.            


The evolution and conservation of left-right patterning mechanisms., Blum M, Feistel K, Thumberger T, Schweickert A., Development. April 1, 2014; 141 (8): 1603-13.              


Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers., Plouhinec JL, Roche DD, Pegoraro C, Figueiredo AL, Maczkowiak F, Brunet LJ, Milet C, Vert JP, Pollet N, Harland RM, Monsoro-Burq AH., Dev Biol. February 15, 2014; 386 (2): 461-72.                                            


Developmental expression of Pitx2c in Xenopus trigeminal and profundal placodes., Jeong YH, Park BK, Saint-Jeannet JP, Lee YH, Lee YH., Int J Dev Biol. January 1, 2014; 58 (9): 701-4.        


Calpain2 protease: A new member of the Wnt/Ca(2+) pathway modulating convergent extension movements in Xenopus., Zanardelli S, Christodoulou N, Skourides PA., Dev Biol. December 1, 2013; 384 (1): 83-100.                        


The Nedd4-binding protein 3 (N4BP3) is crucial for axonal and dendritic branching in developing neurons., Schmeisser MJ, Kühl SJ, Schoen M, Beth NH, Weis TM, Grabrucker AM, Kühl M, Boeckers TM., Neural Dev. December 1, 2013; 8 18.                    


Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein., Hulstrand AM, Houston DW., Dev Biol. October 15, 2013; 382 (2): 385-99.                              


Neurulation and neurite extension require the zinc transporter ZIP12 (slc39a12)., Chowanadisai W, Graham DM, Keen CL, Rucker RB, Messerli MA., Proc Natl Acad Sci U S A. June 11, 2013; 110 (24): 9903-8.        


WNK4 is an essential effector of anterior formation in FGF signaling., Shimizu M, Goto T, Sato A, Shibuya H., Genes Cells. June 1, 2013; 18 (6): 442-9.        


Early development of the thymus in Xenopus laevis., Lee YH, Lee YH, Williams A, Hong CS, You Y, Senoo M, Saint-Jeannet JP., Dev Dyn. February 1, 2013; 242 (2): 164-78.                            


The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis., Parlier D, Moers V, Van Campenhout C, Preillon J, Leclère L, Saulnier A, Sirakov M, Busengdal H, Kricha S, Marine JC, Rentzsch F, Bellefroid EJ., Dev Biol. January 1, 2013; 373 (1): 39-52.                              


Lulu regulates Shroom-induced apical constriction during neural tube closure., Chu CW, Gerstenzang E, Ossipova O, Sokol SY., PLoS One. January 1, 2013; 8 (11): e81854.              


Wnt11b is involved in cilia-mediated symmetry breakage during Xenopus left-right development., Walentek P, Schneider I, Schweickert A, Blum M., PLoS One. January 1, 2013; 8 (9): e73646.          


Protein tyrosine phosphatase 4A3 (PTP4A3) is required for Xenopus laevis cranial neural crest migration in vivo., Maacha S, Planque N, Laurent C, Pegoraro C, Anezo O, Maczkowiak F, Monsoro-Burq AH, Saule S., PLoS One. January 1, 2013; 8 (12): e84717.              


SUMOylated SoxE factors recruit Grg4 and function as transcriptional repressors in the neural crest., Lee PC, Taylor-Jaffe KM, Nordin KM, Prasad MS, Lander RM, LaBonne C., J Cell Biol. September 3, 2012; 198 (5): 799-813.              


Purines as potential morphogens during embryonic development., Massé K, Dale N., Purinergic Signal. September 1, 2012; 8 (3): 503-21.      


Identification and expression analysis of GPAT family genes during early development of Xenopus laevis., Bertolesi GE, Iannattone S, Johnston J, Zaremberg V, McFarlane S., Gene Expr Patterns. August 1, 2012; 12 (7-8): 219-27.                            


Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning., Steventon B, Mayor R, Streit A., Dev Biol. July 1, 2012; 367 (1): 55-65.                


ATP4a is required for Wnt-dependent Foxj1 expression and leftward flow in Xenopus left-right development., Walentek P, Beyer T, Thumberger T, Schweickert A, Blum M., Cell Rep. May 31, 2012; 1 (5): 516-27.                              


Connexin26-mediated transfer of laterality cues in Xenopus., Beyer T, Thumberger T, Schweickert A, Blum M., Biol Open. May 15, 2012; 1 (5): 473-81.            

Page(s): 1 2 3 4 5 6 7 Next

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.12.0


Major funding for Xenbase is provided by grant P41 HD064556