Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (3034) Expression Attributions Wiki
XB-ANAT-297

Papers associated with ventral (and notch1)

Limit to papers also referencing gene:
Show all ventral papers
Results 1 - 50 of 86 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

A Critical E-box in Barhl1 3'' Enhancer Is Essential for Auditory Hair Cell Differentiation., Hou K., Cells. January 1, 2019; 8 (5):               


Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells., Chernoff EAG., Front Cell Neurosci. January 1, 2018; 12 45.                          


Notch1 is asymmetrically distributed from the beginning of embryogenesis and controls the ventral center., Castro Colabianchi AM., Development. January 1, 2018; 145 (14):                           


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL., PLoS Biol. October 1, 2017; 15 (10): e2004045.                                              


Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis., Hasebe T., Stem Cells. January 1, 2017; 35 (4): 1028-1039.            


Dissecting BMP signaling input into the gene regulatory networks driving specification of the blood stem cell lineage., Kirmizitas A., Proc Natl Acad Sci U S A. January 1, 2017; 114 (23): 5814-5821.                    


La-related protein 6 controls ciliated cell differentiation., Manojlovic Z., Cilia. January 1, 2017; 6 4.                


ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia., Walentek P., Dev Biol. December 15, 2015; 408 (2): 292-304.                              


Functional analysis of Hairy genes in Xenopus neural crest initial specification and cell migration., Vega-López GA., Dev Dyn. August 1, 2015; 244 (8): 988-1013.                            


BMP signalling controls the construction of vertebrate mucociliary epithelia., Cibois M., Development. July 1, 2015; 142 (13): 2352-63.                        


TGF-β Signaling Regulates the Differentiation of Motile Cilia., Tözser J., Cell Rep. May 19, 2015; 11 (7): 1000-7.                


Endogenous gradients of resting potential instructively pattern embryonic neural tissue via Notch signaling and regulation of proliferation., Pai VP., J Neurosci. March 11, 2015; 35 (10): 4366-85.                    


mab21-l3 regulates cell fate specification of multiciliate cells and ionocytes., Takahashi C., Nat Commun. January 20, 2015; 6 6017.      


Development of the vertebrate tailbud., Beck CW., Wiley Interdiscip Rev Dev Biol. January 1, 2015; 4 (1): 33-44.        


On the origin of vertebrate somites., Onai T., Zoological Lett. January 1, 2015; 1 33.              


A potential molecular pathogenesis of cardiac/laterality defects in Oculo-Facio-Cardio-Dental syndrome., Tanaka K., Dev Biol. March 1, 2014; 387 (1): 28-36.        


Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis., Curran KL., PLoS One. January 1, 2014; 9 (9): e108266.                            


Spatial and temporal control of transgene expression in zebrafish., Akerberg AA., PLoS One. January 1, 2014; 9 (3): e92217.          


Light-activation of the Archaerhodopsin H(+)-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls in vivo., Adams DS., Biol Open. March 15, 2013; 2 (3): 306-13.          


Comparative Functional Analysis of ZFP36 Genes during Xenopus Development., Tréguer K., PLoS One. January 1, 2013; 8 (1): e54550.                          


Sim2 prevents entry into the myogenic program by repressing MyoD transcription during limb embryonic myogenesis., Havis E., Development. June 1, 2012; 139 (11): 1910-20.                    


Xaml1/Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus., Park BY., Dev Biol. February 1, 2012; 362 (1): 65-75.                


Combinatorial roles for BMPs and Endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton., Alexander C., Development. December 1, 2011; 138 (23): 5135-46.


Dystroglycan is involved in skin morphogenesis downstream of the Notch signaling pathway., Sirour C., Mol Biol Cell. August 15, 2011; 22 (16): 2957-69.                      


Notch destabilises maternal beta-catenin and restricts dorsal-anterior development in Xenopus., Acosta H., Development. June 1, 2011; 138 (12): 2567-79.                          


Hedgehog signaling regulates size of the dorsal aortae and density of the plexus during avian vascular development., Moran CM., Dev Dyn. June 1, 2011; 240 (6): 1354-64.            


A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling., Peyrot SM., Dev Biol. April 15, 2011; 352 (2): 254-66.                              


Specification of ion transport cells in the Xenopus larval skin., Quigley IK., Development. February 1, 2011; 138 (4): 705-14.                                          


Antagonistic role of XESR1 and XESR5 in mesoderm formation in Xenopus laevis., Kinoshita T., Int J Dev Biol. January 1, 2011; 55 (1): 25-31.          


HES6-1 and HES6-2 function through different mechanisms during neuronal differentiation., Vilas-Boas F., PLoS One. December 2, 2010; 5 (12): e15459.                


Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus., White JT., Development. June 1, 2010; 137 (11): 1863-73.                            


Tel1/ETV6 specifies blood stem cells through the agency of VEGF signaling., Ciau-Uitz A., Dev Cell. April 20, 2010; 18 (4): 569-78.                


Delta-Notch signaling is involved in the segregation of the three germ layers in Xenopus laevis., Revinski DR., Dev Biol. March 15, 2010; 339 (2): 477-92.            


Perturbation of Notch/Suppressor of Hairless pathway disturbs migration of primordial germ cells in Xenopus embryo., Morichika K., Dev Growth Differ. February 1, 2010; 52 (2): 235-44.


Coordinating the timing of cardiac precursor development during gastrulation: a new role for Notch signaling., Miazga CM., Dev Biol. September 15, 2009; 333 (2): 285-96.            


Xenopus SMOC-1 Inhibits bone morphogenetic protein signaling downstream of receptor binding and is essential for postgastrulation development in Xenopus., Thomas JT., J Biol Chem. July 10, 2009; 284 (28): 18994-9005.                    


In vitro organogenesis from undifferentiated cells in Xenopus., Asashima M., Dev Dyn. June 1, 2009; 238 (6): 1309-20.                      


Notch signaling downstream of foxD5 promotes neural ectodermal transcription factors that inhibit neural differentiation., Yan B., Dev Dyn. June 1, 2009; 238 (6): 1358-65.        


Hairy2-Id3 interactions play an essential role in Xenopus neural crest progenitor specification., Nichane M., Dev Biol. October 15, 2008; 322 (2): 355-67.                          


Xenopus zinc finger transcription factor IA1 (Insm1) expression marks anteroventral noradrenergic neuron progenitors in Xenopus embryos., Parlier D., Dev Dyn. August 1, 2008; 237 (8): 2147-57.          


Long- and short-range signals control the dynamic expression of an animal hemisphere-specific gene in Xenopus., Mir A., Dev Biol. March 1, 2008; 315 (1): 161-72.            


Sonic hedgehog and bone morphogenetic protein-4 signaling pathway involved in epithelial cell renewal along the radial axis of the intestine., Ishizuya-Oka A., Digestion. January 1, 2008; 77 Suppl 1 42-7.


Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development., Hayes JM., Dev Biol. December 1, 2007; 312 (1): 115-30.                                          


PAR1 specifies ciliated cells in vertebrate ectoderm downstream of aPKC., Ossipova O., Development. December 1, 2007; 134 (23): 4297-306.          


Alterations of rx1 and pax6 expression levels at neural plate stages differentially affect the production of retinal cell types and maintenance of retinal stem cell qualities., Zaghloul NA., Dev Biol. June 1, 2007; 306 (1): 222-40.                      


The competence of Xenopus blastomeres to produce neural and retinal progeny is repressed by two endo-mesoderm promoting pathways., Yan B., Dev Biol. May 1, 2007; 305 (1): 103-19.        


XMam1, Xenopus Mastermind1, induces neural gene expression in a Notch-independent manner., Katada T., Mech Dev. November 1, 2006; 123 (11): 851-9.            


The Notch-effector HRT1 gene plays a role in glomerular development and patterning of the Xenopus pronephros anlagen., Taelman V., Development. August 1, 2006; 133 (15): 2961-71.                  


Radial intercalation of ciliated cells during Xenopus skin development., Stubbs JL., Development. July 1, 2006; 133 (13): 2507-15.          


Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system., Pasini A., PLoS Biol. July 1, 2006; 4 (7): e225.              

Page(s): 1 2 Next

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.12.0


Major funding for Xenbase is provided by grant P41 HD064556