Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (385) Expression Attributions Wiki
XB-ANAT-298

Papers associated with superficial (and sox3)

Limit to papers also referencing gene:
Show all superficial papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Water contamination by delorazepam induces epigenetic defects in the embryos of the clawed frog Xenopus laevis., Fogliano C., Sci Total Environ. October 20, 2023; 896 165300.          


A single-cell, time-resolved profiling of Xenopus mucociliary epithelium reveals nonhierarchical model of development., Lee J., Sci Adv. April 7, 2023; 9 (14): eadd5745.                                                          


Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR., Sempou E., Nat Commun. November 5, 2022; 13 (1): 6681.                                            


aPKC phosphorylates p27Xic1, providing a mechanistic link between apicobasal polarity and cell-cycle control., Sabherwal N., Dev Cell. December 8, 2014; 31 (5): 559-71.                          


NumbL is essential for Xenopus primary neurogenesis., Nieber F., BMC Dev Biol. October 14, 2013; 13 36.                          


sox4 and sox11 function during Xenopus laevis eye development., Cizelsky W., PLoS One. July 1, 2013; 8 (7): e69372.              


ATP4a is required for Wnt-dependent Foxj1 expression and leftward flow in Xenopus left-right development., Walentek P., Cell Rep. May 31, 2012; 1 (5): 516-27.                              


Maternal xNorrin, a canonical Wnt signaling agonist and TGF-β antagonist, controls early neuroectoderm specification in Xenopus., Xu S., PLoS Biol. January 1, 2012; 10 (3): e1001286.                                    


Neural crest specification by noncanonical Wnt signaling and PAR-1., Ossipova O., Development. December 1, 2011; 138 (24): 5441-50.                        


The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module., Rogers CD., BMC Dev Biol. January 26, 2011; 11 74.        


Molecular anatomy of placode development in Xenopus laevis., Schlosser G., Dev Biol. July 15, 2004; 271 (2): 439-66.                          


Oriented cell divisions asymmetrically segregate aPKC and generate cell fate diversity in the early Xenopus embryo., Chalmers AD., Development. June 1, 2003; 130 (12): 2657-68.    


Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation., Chalmers AD., Dev Cell. February 1, 2002; 2 (2): 171-82.    


foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain., Sullivan SA., Dev Biol. April 15, 2001; 232 (2): 439-57.            


Xenopus Six1 gene is expressed in neurogenic cranial placodes and maintained in the differentiating lateral lines., Pandur PD., Mech Dev. September 1, 2000; 96 (2): 253-7.    


Role of frizzled 7 in the regulation of convergent extension movements during gastrulation in Xenopus laevis., Djiane A., Development. July 1, 2000; 127 (14): 3091-100.    


Distinct effects of XBF-1 in regulating the cell cycle inhibitor p27(XIC1) and imparting a neural fate., Hardcastle Z., Development. March 1, 2000; 127 (6): 1303-14.                  


Xiro3 encodes a Xenopus homolog of the Drosophila Iroquois genes and functions in neural specification., Bellefroid EJ., EMBO J. January 2, 1998; 17 (1): 191-203.            

???pagination.result.page??? 1