Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (543) Expression Attributions Wiki
XB-ANAT-308

Papers associated with lateral plate mesoderm (and aplnr)

Limit to papers also referencing gene:
Show all lateral plate mesoderm papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Dissecting BMP signaling input into the gene regulatory networks driving specification of the blood stem cell lineage., Kirmizitas A., Proc Natl Acad Sci U S A. June 6, 2017; 114 (23): 5814-5821.                    


Hippo signaling components, Mst1 and Mst2, act as a switch between self-renewal and differentiation in Xenopus hematopoietic and endothelial progenitors., Nejigane S., Int J Dev Biol. January 1, 2013; 57 (5): 407-14.                      


Fgf is required to regulate anterior-posterior patterning in the Xenopus lateral plate mesoderm., Deimling SJ., Mech Dev. January 1, 2011; 128 (7-10): 327-41.                                


Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus., White JT., Development. June 1, 2010; 137 (11): 1863-73.                            


A Myc-Slug (Snail2)/Twist regulatory circuit directs vascular development., Rodrigues CO., Development. June 1, 2008; 135 (11): 1903-11.              


Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus., Walmsley M., Development. December 1, 2002; 129 (24): 5683-95.          


VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus., Cleaver O., Development. October 1, 1998; 125 (19): 3905-14.          


Neovascularization of the Xenopus embryo., Cleaver O., Dev Dyn. September 1, 1997; 210 (1): 66-77.        


Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis., Devic E., Mech Dev. October 1, 1996; 59 (2): 129-40.        

???pagination.result.page??? 1