Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (9006) Expression Attributions Wiki
XB-ANAT-3335

Papers associated with cell part (and sgk1)

Limit to papers also referencing gene:
Show all cell part papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Virus-Host Interactions of Enteroviruses and Parvovirus B19 in Myocarditis., Ho HT., Cell Physiol Biochem. November 18, 2021; 55 (6): 679-703.        


Nervous NDRGs: the N-myc downstream-regulated gene family in the central and peripheral nervous system., Schonkeren SL., Neurogenetics. October 1, 2019; 20 (4): 173-186.      


Regulation of Kv1.4 potassium channels by PKC and AMPK kinases., Andersen MN., Channels (Austin). January 1, 2018; 12 (1): 34-44.              


WNK3 abrogates the NEDD4-2-mediated inhibition of the renal Na+-Cl- cotransporter., Lagnaz D., Am J Physiol Renal Physiol. August 1, 2014; 307 (3): F275-86.


Serum and glucocorticoid-inducible kinase1 increases plasma membrane wt-CFTR in human airway epithelial cells by inhibiting its endocytic retrieval., Bomberger JM., PLoS One. February 19, 2014; 9 (2): e89599.                  


Up-regulation of Kir2.1 (KCNJ2) by the serum & glucocorticoid inducible SGK3., Munoz C., Cell Physiol Biochem. January 1, 2014; 33 (2): 491-500.


PIKfyve sensitivity of hERG channels., Pakladok T., Cell Physiol Biochem. January 1, 2013; 31 (6): 785-94.


Identification of a novel signaling pathway and its relevance for GluA1 recycling., Seebohm G., PLoS One. January 1, 2012; 7 (3): e33889.                


Stimulation of Na+/K+ ATPase activity and Na+ coupled glucose transport by β-catenin., Sopjani M., Biochem Biophys Res Commun. November 19, 2010; 402 (3): 467-70.


The neuronal-specific SGK1.1 kinase regulates {delta}-epithelial Na+ channel independently of PY motifs and couples it to phospholipase C signaling., Wesch D., Am J Physiol Cell Physiol. October 1, 2010; 299 (4): C779-90.


Regulation of the Ca(2+) channel TRPV6 by the kinases SGK1, PKB/Akt, and PIKfyve., Sopjani M., J Membr Biol. February 1, 2010; 233 (1-3): 35-41.


The serum and glucocorticoid inducible kinases SGK1-3 stimulate the neutral amino acid transporter SLC6A19., Böhmer C., Cell Physiol Biochem. January 1, 2010; 25 (6): 723-32.


Functional regulation of the epithelial Na+ channel by IkappaB kinase-beta occurs via phosphorylation of the ubiquitin ligase Nedd4-2., Edinger RS., J Biol Chem. January 2, 2009; 284 (1): 150-157.


The C-terminal PDZ-binding motif in the Kv1.5 potassium channel governs its modulation by the Na+/H+ exchanger regulatory factor 2., Laufer J., Cell Physiol Biochem. January 1, 2009; 23 (1-3): 25-36.


Regulation of the Na(+)-coupled glutamate transporter EAAT3 by PIKfyve., Klaus F., Neurochem Int. January 1, 2009; 54 (5-6): 372-7.


Regulation of the glutamate transporter EAAT2 by PIKfyve., Gehring EM., Cell Physiol Biochem. January 1, 2009; 24 (5-6): 361-8.


Cholesterol depletion of the plasma membrane prevents activation of the epithelial sodium channel (ENaC) by SGK1., Krueger B., Cell Physiol Biochem. January 1, 2009; 24 (5-6): 605-18.


Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by serum- and glucocorticoid-regulated kinase-1., Schuetz F., Am J Physiol Cell Physiol. July 1, 2008; 295 (1): C73-80.


Up-regulation of hypertonicity-activated myo-inositol transporter SMIT1 by the cell volume-sensitive protein kinase SGK1., Klaus F., J Physiol. March 15, 2008; 586 (6): 1539-47.


The role of SGK and CFTR in acute adaptation to seawater in Fundulus heteroclitus., Shaw JR., Cell Physiol Biochem. January 1, 2008; 22 (1-4): 69-78.


Modulation of the voltage-gated potassium channel Kv1.5 by the SGK1 protein kinase involves inhibition of channel ubiquitination., Boehmer C., Cell Physiol Biochem. January 1, 2008; 22 (5-6): 591-600.


Regulation of the epithelial calcium channel TRPV6 by the serum and glucocorticoid-inducible kinase isoforms SGK1 and SGK3., Böhmer C., FEBS Lett. December 11, 2007; 581 (29): 5586-90.


Role of SGK1 kinase in regulating glucose transport via glucose transporter GLUT4., Jeyaraj S., Biochem Biophys Res Commun. May 11, 2007; 356 (3): 629-35.


Regulation of human cystic fibrosis transmembrane conductance regulator (CFTR) by serum- and glucocorticoid-inducible kinase (SGK1)., Sato JD., Cell Physiol Biochem. January 1, 2007; 20 (1-4): 91-8.


Renal Ca2+ handling in sgk1 knockout mice., Sandulache D., Pflugers Arch. July 1, 2006; 452 (4): 444-52.


Additive regulation of GluR1 by stargazin and serum- and glucocorticoid-inducible kinase isoform SGK3., Strutz-Seebohm N., Pflugers Arch. June 1, 2006; 452 (3): 276-82.


Post-translational regulation of EAAT2 function by co-expressed ubiquitin ligase Nedd4-2 is impacted by SGK kinases., Boehmer C., J Neurochem. May 1, 2006; 97 (4): 911-21.


SGK1 activates Na+-K+-ATPase in amphibian renal epithelial cells., Alvarez de la Rosa D., Am J Physiol Cell Physiol. February 1, 2006; 290 (2): C492-8.


SGK1 kinase upregulates GLUT1 activity and plasma membrane expression., Palmada M., Diabetes. February 1, 2006; 55 (2): 421-7.


Upregulation of HERG channels by the serum and glucocorticoid inducible kinase isoform SGK3., Maier G., Cell Physiol Biochem. January 1, 2006; 18 (4-5): 177-86.


Role of SGK1 in nitric oxide inhibition of ENaC in Na+-transporting epithelia., Helms MN., Am J Physiol Cell Physiol. September 1, 2005; 289 (3): C717-26.


Aldosterone-induced serum and glucocorticoid-induced kinase 1 expression is accompanied by Nedd4-2 phosphorylation and increased Na+ transport in cortical collecting duct cells., Flores SY., J Am Soc Nephrol. August 1, 2005; 16 (8): 2279-87.


Nedd4-2 isoforms differentially associate with ENaC and regulate its activity., Itani OA., Am J Physiol Renal Physiol. August 1, 2005; 289 (2): F334-46.


Regulation of GluR1 abundance in murine hippocampal neurones by serum- and glucocorticoid-inducible kinase 3., Strutz-Seebohm N., J Physiol. June 1, 2005; 565 (Pt 2): 381-90.


The serine/threonine kinases SGK1, 3 and PKB stimulate the amino acid transporter ASCT2., Palmada M., Biochem Biophys Res Commun. May 27, 2005; 331 (1): 272-7.


Requirement of PDZ domains for the stimulation of the epithelial Ca2+ channel TRPV5 by the NHE regulating factor NHERF2 and the serum and glucocorticoid inducible kinase SGK1., Palmada M., Cell Physiol Biochem. January 1, 2005; 15 (1-4): 175-82.


Stimulation of the EAAT4 glutamate transporter by SGK protein kinase isoforms and PKB., Böhmer C., Biochem Biophys Res Commun. November 26, 2004; 324 (4): 1242-8.


Mechanisms of regulation of epithelial sodium channel by SGK1 in A6 cells., Alvarez de la Rosa D., J Gen Physiol. October 1, 2004; 124 (4): 395-407.                    


Serum and glucocorticoid inducible kinases functionally regulate ClC-2 channels., Palmada M., Biochem Biophys Res Commun. September 3, 2004; 321 (4): 1001-6.


Regulation of glucose transporter SGLT1 by ubiquitin ligase Nedd4-2 and kinases SGK1, SGK3, and PKB., Dieter M., Obes Res. May 1, 2004; 12 (5): 862-70.


Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A., Yoo D., J Biol Chem. June 20, 2003; 278 (25): 23066-75.


The serum and glucocorticoid-inducible kinase SGK1 and the Na+/H+ exchange regulating factor NHERF2 synergize to stimulate the renal outer medullary K+ channel ROMK1., Yun CC., J Am Soc Nephrol. December 1, 2002; 13 (12): 2823-30.


Cerebral localization and regulation of the cell volume-sensitive serum- and glucocorticoid-dependent kinase SGK1., Wärntges S., Pflugers Arch. February 1, 2002; 443 (4): 617-24.


Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK., Loffing J., Am J Physiol Renal Physiol. April 1, 2001; 280 (4): F675-82.


The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes., Alvarez de la Rosa D., J Biol Chem. December 31, 1999; 274 (53): 37834-9.

???pagination.result.page??? 1