Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (9006) Expression Attributions Wiki
XB-ANAT-3335

Papers associated with cell part (and vim)

Limit to papers also referencing gene:
Show all cell part papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa., Bocquet B., JCI Insight. November 8, 2023; 8 (21):                                               


Mitochondrial cellular organization and shape fluctuations are differentially modulated by cytoskeletal networks., Fernández Casafuz AB., Sci Rep. March 11, 2023; 13 (1): 4065.        


Metamorphic gene regulation programs in Xenopus tropicalis tadpole brain., Raj S., PLoS One. January 1, 2023; 18 (6): e0287858.                


ADAM11 a novel regulator of Wnt and BMP4 signaling in neural crest and cancer., Pandey A., Front Cell Dev Biol. January 1, 2023; 11 1271178.                      


Developmental and Injury-induced Changes in DNA Methylation in Regenerative versus Non-regenerative Regions of the Vertebrate Central Nervous System., Reverdatto S., BMC Genomics. January 4, 2022; 23 (1): 2.                      


Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis., Edwards-Faret G., Neural Dev. February 2, 2021; 16 (1): 2.                              


Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs., Sonam S., Exp Eye Res. July 1, 2019; 184 107-125.                        


Epithelial-Mesenchymal Transition Promotes the Differentiation Potential of Xenopus tropicalis Immature Sertoli Cells., Nguyen TMX., Stem Cells Int. May 5, 2019; 2019 8387478.                                            


Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain., Thompson AJ., Elife. January 15, 2019; 8                     


Development of an Acute Method to Deliver Transgenes Into the Brains of Adult Xenopus laevis., Yamaguchi A., Front Neural Circuits. October 26, 2018; 12 92.                


PAWS1 controls Wnt signalling through association with casein kinase 1α., Bozatzi P., EMBO Rep. April 1, 2018; 19 (4):                             


JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis., Tapia VS., Regeneration (Oxf). February 1, 2017; 4 (1): 21-35.                          


The small heat shock protein, HSP30, is associated with aggresome-like inclusion bodies in proteasomal inhibitor-, arsenite-, and cadmium-treated Xenopus kidney cells., Khan S., Comp Biochem Physiol A Mol Integr Physiol. November 1, 2015; 189 130-40.


Expression of the cyp19a1 gene in the adult brain of Xenopus is neuronal and not sexually dimorphic., Coumailleau P., Gen Comp Endocrinol. September 15, 2015; 221 203-12.        


A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis., Gujral TS., Cell. November 6, 2014; 159 (4): 844-56.              


The neurogenic factor NeuroD1 is expressed in post-mitotic cells during juvenile and adult Xenopus neurogenesis and not in progenitor or radial glial cells., D'Amico LA., PLoS One. June 11, 2013; 8 (6): e66487.          


Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells., Gaete M., Neural Dev. April 26, 2012; 7 13.            


In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles., Bestman JE., J Comp Neurol. February 1, 2012; 520 (2): 401-33.                      


Proliferation, migration and differentiation in juvenile and adult Xenopus laevis brains., D'Amico LA., Dev Biol. August 8, 2011; 1405 31-48.            


IGF-1 increases invasive potential of MCF 7 breast cancer cells and induces activation of latent TGF-β1 resulting in epithelial to mesenchymal transition., Walsh LA., Cell Commun Signal. May 2, 2011; 9 (1): 10.            


The nucleoporin Nup88 is interacting with nuclear lamin A., Lussi YC., Mol Biol Cell. April 1, 2011; 22 (7): 1080-90.          


Germinal sites and migrating routes of cells in the mesencephalic and diencephalic auditory areas in the African clawed frog (Xenopus laevis)., Huang YF., Dev Biol. February 10, 2011; 1373 67-78.          


Statistics of active transport in Xenopus melanophores cells., Snezhko A., Biophys J. November 17, 2010; 99 (10): 3216-23.


Regulation of radial glial motility by visual experience., Tremblay M., J Neurosci. November 11, 2009; 29 (45): 14066-76.                


The dynamic properties of intermediate filaments during organelle transport., Chang L., J Cell Sci. August 15, 2009; 122 (Pt 16): 2914-23.                


Enhancement of axonal regeneration by in vitro conditioning and its inhibition by cyclopentenone prostaglandins., Tonge D., J Cell Sci. August 1, 2008; 121 (Pt 15): 2565-77.                        


Characterization of a nuclear compartment shared by nuclear bodies applying ectopic protein expression and correlative light and electron microscopy., Richter K., Exp Cell Res. February 1, 2005; 303 (1): 128-37.


Searching for biomarkers of Aurora-A kinase activity: identification of in vitro substrates through a modified KESTREL approach., Troiani S., J Proteome Res. January 1, 2005; 4 (4): 1296-303.


4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin - poor tracks., Bacher CP., BMC Cell Biol. November 23, 2004; 5 45.                  


Symplekin, a constitutive protein of karyo- and cytoplasmic particles involved in mRNA biogenesis in Xenopus laevis oocytes., Hofmann I., Mol Biol Cell. May 1, 2002; 13 (5): 1665-76.


Investigation of nuclear architecture with a domain-presenting expression system., Dreger CK., J Struct Biol. January 1, 2002; 140 (1-3): 100-15.


A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization., Cau J., J Cell Biol. December 10, 2001; 155 (6): 1029-42.                    


Glial-defined boundaries in Xenopus CNS., Yoshida M., Dev Neurosci. January 1, 2001; 23 (4-5): 299-306.


Disruption of nuclear lamin organization blocks the elongation phase of DNA replication., Moir RD., J Cell Biol. June 12, 2000; 149 (6): 1179-92.                    


In vivo observation of a nuclear channel-like system: evidence for a distinct interchromosomal domain compartment in interphase cells., Reichenzeller M., J Struct Biol. April 1, 2000; 129 (2-3): 175-85.


Identification of an interchromosomal compartment by polymerization of nuclear-targeted vimentin., Bridger JM., J Cell Sci. May 1, 1998; 111 ( Pt 9) 1241-53.


Occurrence of proteinaceous 10-nm filaments throughout the cytoplasm of algae of the order Dasycladales., Berger S., Exp Cell Res. May 1, 1998; 240 (2): 176-86.


A Xenopus DAZ-like gene encodes an RNA component of germ plasm and is a functional homologue of Drosophila boule., Houston DW., Development. January 1, 1998; 125 (2): 171-80.                


RNA-protein interactions within the 3 ' untranslated region of vimentin mRNA., Zehner ZE., Nucleic Acids Res. August 15, 1997; 25 (16): 3362-70.


A kinesin-like protein is required for germ plasm aggregation in Xenopus., Robb DL., Cell. November 29, 1996; 87 (5): 823-31.              


Effects of intermediate filament disruption on the early development of the peripheral nervous system of Xenopus laevis., Lin W., Dev Biol. October 10, 1996; 179 (1): 197-211.            


Disruption of intermediate filament organization leads to structural defects at the intersomite junction in Xenopus myotomal muscle., Cary RB., Development. April 1, 1995; 121 (4): 1041-52.              


Truncation mutagenesis of the non-alpha-helical carboxyterminal tail domain of vimentin reveals contributions to cellular localization but not to filament assembly., Rogers KR., Eur J Cell Biol. February 1, 1995; 66 (2): 136-50.


Properties of fluorescently labeled Xenopus lamin A in vivo., Schmidt M., Eur J Cell Biol. October 1, 1994; 65 (1): 70-81.


Morphogenesis and the cytoskeleton: studies of the Xenopus embryo., Klymkowsky MW., Dev Biol. October 1, 1994; 165 (2): 372-84.            


Vimentin's tail interacts with actin-containing structures in vivo., Cary RB., J Cell Sci. June 1, 1994; 107 ( Pt 6) 1609-22.


Temperature-sensitive intermediate filament assembly. Alternative structures of Xenopus laevis vimentin in vitro and in vivo., Herrmann H., J Mol Biol. November 5, 1993; 234 (1): 99-113.


Host cell factors controlling vimentin organization in the Xenopus oocyte., Dent JA., J Cell Biol. November 1, 1992; 119 (4): 855-66.


Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis., Charnas LR., J Neurosci. August 1, 1992; 12 (8): 3010-24.                      


Assembly of a tail-less mutant of the intermediate filament protein, vimentin, in vitro and in vivo., Eckelt A., Eur J Cell Biol. August 1, 1992; 58 (2): 319-30.

???pagination.result.page??? 1 2 ???pagination.result.next???